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Abstract—Healthcare organizations are increasingly using 
information technology to ensure patient safety, increase 
effectiveness and improve efficiency of healthcare delivery. While 
the use of health information technology (HIT) has realized many 
improvements, it has also introduced new failure modes arising 
from data quality and IT system usability issues. This paper 
presents an approach towards addressing these failure modes by 
applying real-time analytics to existing streams of clinical 
messages exchanged by HIT systems. We use complex event 
processing provided by the EventSwarm software framework to 
monitor data quality in such systems through intercepting 
messages and applying rules reflecting the syndromic surveillance 
model proposed in [4]. We believe this is the first work reporting 
on the real-time application of syndromic surveillance rules to 
legacy clinical data streams. Our design and implementation 
demonstrates the feasibility of this approach and highlights 
benefits obtained through improved operational quality of HIT 
systems, notably better patient safety, reduced risks in healthcare 
delivery and potentially reduced costs. 
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I.  INTRODUCTION 
Healthcare organisations and facilities are increasingly 

using information technology to ensure patient safety, 
increase effectiveness and improve efficiency. While the use 
of health information technology (HIT) has realised many 
improvements, it has also introduced new failure modes 
arising from data quality and IT system usability issues [1]. 
Healthcare organisations and facilities are increasingly 
looking for solutions that can recognise data quality and 
usage issues, then act immediately and in real time. This 
automatic recognition of issues can improve quality and 
efficiency through faster reaction to opportunities and 
threats. The volume, complexity and velocity of data streams 
that feed such real time analytics are increasing. While 
database tools can provide the analytical capability and in 
some cases deal with the volume of data, they lack the ability 
to behave actively and respond in real time. Complex event 
processing technology (CEP) provides mechanisms that can 
address the real-time requirement (velocity), and with the 
right architecture, can also handle the volume and analytical 
capabilities required.  

Health messaging is mature and quite entrenched in 
laboratories and other healthcare facilities. These facilities 

emit results, assessments and other messages typically 
structured in a form governed by the Health Level 7 (HL7) 
v2 standards [2]. The primary use of such data in current 
applications is for clinical (human) interpretation. The 
structured nature of this messaging, however, makes it 
feasible to attach a CEP engine to the stream of HL7 v2 
messages received and emitted by a laboratory. CEP can 
then be used to monitor messages in real time and 
automatically detect data quality issues and clinical issues of 
interest. Such monitoring can improve the safety of the HIT 
systems and reduce the risk of harming patients [1].  

In this paper, we describe the application of CEP 
techniques embodied in the EventSwarm framework [3] to 
legacy streams of HL7 v2 messages, using statistical 
techniques to identify unusual behaviours that indicate 
failure or data quality issues. A review of CEP capabilities 
and semantics is presented both to ensure readers are familiar 
with the technology and to position the distinguishing 
characteristics of EventSwarm. Upon recognition of such 
behaviours, an alert is sent to an operator or maintenance 
organisation to investigate and fix the problem as quickly as 
possible. The solution allows health organizations to 
continuously monitor the quality of data exchanged and thus 
the HIT systems from which the data originates - 
contributing to the improved safety of HIT components and 
ultimately to the safety of patients. The high cost and high 
demand on equipment used to produce laboratory messages 
also makes outages very costly. Thus there is also a 
considerable cost benefit in having such real-time analytics 
and alerting. 

This paper is motivated by the recent work of Mei-Sing 
Ong et al [4] who proposed a new approach to early 
detection of HIT system failures using a syndromic 
surveillance method. They demonstrate the efficacy and 
feasibility of such surveillance against a static data set. We 
extend this work to show how the surveillance can be 
implemented in real time against existing data streams using 
the EventSwarm framework. Our solution also takes 
advantage of the HL7 data typing to extend the scope of the 
syndromic surveillance presented in [4].  

The paper is structured as follows: section II identifies 
and discusses potential adverse impacts of HIT on patient 
safety and outlines the syndromic surveillance approach as a 
way of improving safety of HIT systems; section III provides 
a review of real-time analytics capabilities provided by CEP 
in general and EventSwarm in particular; section IV 



describes the design and implementation of a solution using 
EventSwarm to implement syndromic surveillance against 
HL7 v2 data streams; section V discusses key features of the 
solution and other potential applications of CEP in 
monitoring HIT systems in general; and section VI 
concludes the paper.  

II. IMPROVING PATIENT SAFETY AND REDUCING COSTS : 
USE OF IT FOR MONITORING 

A. Health IT and Patient Safety 
A recent report published by Institute of Medicine [1] 

identifies a number of new concerns arising from the 
increased use of HIT in support of patient care. While the 
report highlights the benefits that HIT brings, including 
significantly improved quality of health care and reduced 
medical errors, the paper also provides some evidence of 
unintentional consequences of HIT on patient safety. It 
warns that if designed and applied inappropriately, HIT can 
add an additional layer of complexity to the already complex 
delivery of health care. This in turn can lead to unintended 
adverse consequences, for example dosing errors, failure to 
detect fatal illnesses and delayed treatment due to poor 
human–computer interactions or loss of data [1]. 

The concern for patient safety needs to be reflected in the 
design, implementation, use and maintenance phases of HIT 
systems. It is important to note that each of these stages 
needs to be informed by the enterprise or community context 
in which the HIT systems are to be implemented. This is 
reinforced in the report, stating that ‘safety is an emergent 
property of a larger system that takes into account not just 
the software but also how it is used by clinicians. The larger 
system—often called a sociotechnical system—includes 
technology (e.g., software, hardware), people (e.g., 
clinicians, patients), processes (e.g., workflow), organization 
(e.g., capacity, decisions about how health IT is applied, 
incentives), and the external environment (e.g., regulations, 
public opinion)’ [1]. We take these considerations into 
account in the design and implementation of our solution, as 
will be discussed in section IV. 

B. Health IT and Cost 
HIT reduces the cost of healthcare delivery by reducing 

time spent by clinicians on time-consuming paper work and 
allowing them to focus on healthcare delivery. Costs are also 
reduced through automation of clinical workflows. 

IT systems can also reduce costs arising from 
organizational or human factors, such as requesting duplicate 
lab orders or medications. These actions can be detected 
through the use of an appropriately configured monitoring 
infrastructure as will be discussed in section IV.  

C. Syndromic Surveillance approach: Laboratory Orders 
and Results 
In order to deal with early detection of HIT system 

failures, Mei-Sing Ong et al [4] investigated the feasibility of 
using a syndromic surveillance approach to detect health 
system failures. Syndromic surveillance is typically used in 
early detection of disease outbreaks and the authors wanted 

to determine whether a similar approach could detect HIT 
failures. They focused on detecting HIT failures in a 
laboratory information system (LIS) at a tertiary hospital, 
looking for anomalies in semantics (e.g. unexpected values) 
as well as structure (e.g. missing values) of data. A study of a 
one-year dataset from the hospital was performed for which 
the authors simulated four types of HIT failures and 
performed statistical analysis of the LIS data to detect those 
failures.  

Their initial results were encouraging, suggesting that 
syndromic surveillance methods ‘can be potentially applied 
to monitor HIT systems to facilitate the early detection of 
failures’ [4]. We leverage this work and show how elements 
of the syndromic surveillance system they described can be 
implemented through near real-time monitoring of HIT 
systems. In the following subsections, we briefly describe 
their approach, focusing in particular on the elements of 
relevance for our implementation. 

Typical steps in undertaking syndromic surveillance are: 
defining syndromes; modeling baseline profiles; defining 
detection algorithms; and model validation.  These steps are 
described next, based on the approach presented in [4], with 
a view of how they can be implemented using EventSwarm. 

1) Defining syndromes  
In the LIS scenario described, a number of symptoms or 

problems related to data quality were defined which are 
collectively referred to as the syndrome for LIS failures. 
These are: (1) loss of laboratory record created by a provider; 
(2) loss of data stored as a field within a laboratory record; 
(3) erroneous data being introduced into existing records (i.e. 
data entered by a provider differ from the data being stored 
or retrieved); and (4) unintended duplication of data (i.e. 
duplication of existing records not manually created by a 
provider).  

In order to capture these four classes of failure 
symptoms, in their analysis the authors focused on the 
following indices and were looking for unexpected changes 
in them as signals for potential LIS problems: 

1. Total laboratory records created in a given time 
frame so that an unexpected drop in the number of 
test records provides an indicator for data loss at the 
record level. 

2. Total laboratory records with missing result so that 
an unexpected increase in the number of tests with 
missing results field provides an indicator for data 
loss at the field level. 

3. Average test results for individual tests (serum 
potassium was selected as a proof of concept), so 
that an anomalous shift in the average level of 
serum potassium across all patients could signify 
that the data integrity of the LIS has been 
compromised. 

4. Total number of tests of any types performed on the 
same patient within 24 hours of the same test being 
performed, so that a sudden increase in the number 
of duplicated tests requested is an indicator that test 
requests might be unintentionally duplicated. 



The EventSwarm solution described in section IV 
focuses on items (3) and (4) above, since they are easily 
identifiable against an HL7 data stream. For (3) in particular, 
we are able to maintain statistics for all test results having 
numeric values. 

2) Modeling baseline profiles  
The purpose of this step is to establish a baseline against 

which new data can be compared in order to detect 
unexpected changes in indices. In [4], they have used two 
thirds of the dataset to establish the baseline values, and then 
used the remaining third to simulate new data arrival. The 
baseline values were established by applying statistical 
analysis to calculate mean, standard deviation and variance.  

3) Defining detection algorithms 
In this step, one defines rules for detecting significant 

unexpected changes. In [4], they have used a statistical 
control algorithm with the following triggers: 

• If an observed data is 3 standard deviation (SD) 
above or below mean;  

• Two out of three successive points more than 2 SD 
from the mean on the same side of the mean line; 

• Four out of five successive points more than 1 SD 
from the mean on the same side of the mean line; 
and 

• Six successive points on the same side of the mean 
line. 

The EventSwarm solution implements each of these 
controls, evaluating the data in each HL7 message against 
each control. 

4) Model validation   
The purpose of this step is to perform validation of the 

model to detect failures. In the study this was achieved 
through simulating failures, each lasting for 24 hours with 
error rates ranging from 1% to 35%. The detailed description 
is beyond the scope of this paper, but the key conclusion was 
that syndromic surveillance methods were successful in 
identifying failures in HIT systems. 

III. REAL-TIME ANALYTICS AND EVENTSWARM 
EventSwarm is a programming framework for complex 

event processing [5] or more recently referred to as real-time 
analytics. In this section, we provide an overview of CEP 
and EventSwarm in particular.  

A. Origins 
CEP is the analysis of streams of discrete information 

elements known as events. An event signifies an occurrence 
of interest, that is, it is a record of an observation made by a 
person or system. The complex adjective is used to highlight 
the application of correlation, aggregation and abstraction to 
raw event streams, allowing systems to recognize complex 
patterns of behaviour through analysis of the streams.  

Luckham et al [5][7] and Bacon et al [6] pioneered 
research into CEP in the 1990s. Luckham focused on 
simulation and pattern matching, while Bacon et al focused 
on the construction of distributed applications using event-
driven approaches. Rakotonirainy et al [8] published early 
work on building abstractions from event relationships in a 

similar timeframe. In [9], Berry extended and generalized 
this work and provided semantic foundations for describing 
event-based interactions in distributed systems. Early 
applications of CEP to real-time contract monitoring were 
explored by Milosevic et al [10] and Linington et al [11]. 
This body of work has steadily matured and is now 
embodied in a number of commercial products, including 
Apama [12], Esper [13], Infosphere Streams (IBM) [14], 
BusinessEvents (Tibco) [15], Oracle [16], SAP [17] and 
EventSwarm [3]. 

The features available in these products vary according to 
their targeted markets and applications, but many 
commonalities exist. Subsequent sections explore the typical 
capabilities of CEP systems and highlight the distinguishing 
characteristics of EventSwarm. A more extensive review can 
be found in [20]. 

B. Features 
The core capability of all such systems and many 

preceding systems is to match the attributes of individual 
events, and as such, this capability is assumed. The key 
feature of CEP systems is the ability to recognize higher-
level patterns through correlation, aggregation and 
abstraction. The following subsections describe some of 
these capabilities. 

1) Event Expressions 
Event expressions are the fundamental building block of 

a CEP system, allowing the specification of matching criteria 
for a single event. In the simplest cases, event expressions 
are based on static inspection of individual event attributes, 
for example, e.color = red. CEP systems can, 
however, offer far more sophisticated event matching based 
on statistical analysis, patterns and other computed 
abstractions.  

In subsequent sections, event expressions are referenced 
by capital letters (e.g. A, B ...).  

2) Filtering 
Event streams associated with CEP are becoming 

increasingly voluminous, and a common mechanism used to 
constrain the scale of analytics is filtering. A filter applies an 
event expression A to a stream or streams and excludes 
events that do not satisfy A from any subsequent processing. 
Filtering event expressions can range in complexity from 
simple static inspection of event attributes to comparisons 
against complex computed abstractions, typically depending 
on the event expression capabilities offered by the system, as 
discussed in the preceding subsection. 

 The EventSwarm framework includes the ability to filter 
on any computed abstraction that matches a single event, 
including statistical analysis (e.g. attribute e.x is more than 
r standard deviations from the mean of all e.x attributes 
observed). 

3) Pattern matching 
Pattern matching is a core correlation mechanism and 

refers to the ability of the system to match event patterns 
using logical operators and sequencing over event 
expressions, including: 



• AND, that is, a pattern A AND B matches pairs of 
events e1,e2 such that e1 satisfies A and e2 
satisfies B.  

• OR, that is, a pattern A OR B matches one or more 
events e1,e2 such that e1 satisfies A or e2 
satisfies B.  

• XOR, that is a pattern A XOR B matches individual 
events e such that either e satisfies A or e satisfies B 
but not both. 

• repetition, that is, a pattern A{n} matches n 
occurrences of A. Repetition is sometimes 
considered a specialization of AND.  

• sequence, that is a pattern A then B matches 
pairs of events e1,e2 such that e1 satisfies A and 
e2 satisfies b and e1 occurs before e2 in time. 

• causal sequence, that is, A -> B matches pairs of 
events e1,e2 such that e1 satisfies A and e2 
satisfies B and e1 causally precedes e2 using a 
comparison based on vector clocks [18]. 

In all cases above, these patterns are usually extensible to 
n event expression components. The availability of these 
pattern components varies across systems. While the first 
five above are assumed capabilities for a CEP system, the 
causal sequence capability is less widely available. The 
EventSwarm framework is capable of using causal 
precedence in sequence patterns, although as discussed in the 
following subsection, this has limited value outside closed, 
tightly coupled systems. 

 The above pattern types do not usually exclude the 
possibility of intervening events, that is, one or more events 
e{n..m} that occur between e1 and e2. For most CEP 
systems, there is an underlying assumption of partial state, 
that is, a complete view of all behaviours is not available, 
making such exclusion inappropriate. 

4) Complex events 
A pattern match in a CEP system is sometimes called a 

complex event. A complex event is a set of events that 
indicates a behaviour of interest. Systems typically provide 
mechanisms to capture complex events in a higher-level 
structure that references the component events and the 
pattern or abstraction that it represents. EventSwarm uses the 
general term Activity for this type of event, and the specific 
term ComplexExpressionMatch for events generated as a 
result of matching a pattern.  

5) Time and ordering 
As implied in the previous section, there are a variety of 

ways to manage the ordering of events in time. A key 
difficulty in CEP is that different event sources also have 
different time sources. A further complication arises because 
the latency of delivery is such that events are often delivered 
out of order. Thus a CEP solution needs to have a considered 
and careful approach to the use of event timestamps and 
event ordering. This approach is particularly important in the 
handling of sequence patterns.  

Some systems will use the clock time on the system that 
is processing the events. This is simple and ensures that 
events can be presented for processing in a time-consistent 

order. It also has many deficiencies, in particular, it makes 
sequencing of events particularly inaccurate due to latency 
and clock skew when distributed event sources are used. In 
such systems, sequence patterns must be treated with 
considerable caution.  

Other systems will use the event timestamp of events and 
provide mechanisms to handle out-of-order events. This is 
more complex to implement and requires that application 
design considers event sources and timing to ensure that out-
of-order events are correctly handled. When combined with 
appropriate buffering of events in expressions, it provides a 
much more robust and reliable result. This approach also 
allows for flexible replay in simulation and testing scenarios, 
ensuring time windows and other time-driven expressions 
are correctly evaluated. This approach still suffers from 
inaccuracy arising from clock skew across the event sources. 
Providing an allowance for clock skew in time comparisons 
can assist, that is, treating events from distinguished sources 
as concurrent if their timestamps differ by less than the 
maximum anticipated clock skew. It should be noted that this 
skew allowance can result in false negatives when matching, 
so must be applied judiciously. Due to the difficulties 
associated with sequencing, it is often better to use a logical 
AND within a time window instead of a sequence for patterns 
where matched events are close in time.  

It is also feasible in some cases to implement ordering 
comparisons based on vector clocks [18] to define a causal 
order. Few CEP systems provide this capability, in part due 
to the relative difficulty of implementation: establishing 
causal precedence is generally only possible in a closed 
system with cooperating components and limited 
communication mechanisms. 

The EventSwarm framework uses event timestamps and 
buffering to provide a robust and flexible time and ordering 
implementation. It uses before, after and indistinguishable or 
parallel relationships between events to give flexibility in 
ordering. Time skew allowance and causal ordering based on 
vector clocks are available, although as noted, it is difficult 
to use causal ordering except in closed environments. These 
time handling features are quite novel in an implementation 
of complex event processing, giving EventSwarm 
considerable flexibility in dealing with multiple, independent 
data sources. 

6) Sliding Time Windows 
Sliding time windows are an aggregation mechanism that 

limits the scope of correlation and abstraction to a window 
that moves relative to the current time. A sliding time 
window includes all events whose timestamp is within a 
defined period before the current time.  

An important aspect of sliding time windows is in how 
the current time is determined. Some systems will use the 
clock time; others will use event timestamps to determine the 
window bounds, that is, an event e1 remains within the 
window until a subsequent event e_n is observed with a 
timestamp more than the window period ahead of e1. This 
latter approach is more robust in a distributed context, 
although there are still window accuracy implications for 
both approaches when events are received out-of-order or 



with high latency. The EventSwarm framework uses the 
event timestamp approach.  

7) Statistical Analysis 
Statistical calculations are essential in many applications 

of CEP. A CEP framework typically provides the ability to 
calculate statistics on attributes of events, or in some cases, 
on other values computed during processing. These 
calculations can then be used to detect, for example, when 
the average price of a stock has risen by more than 10% or 
when a health care laboratory result falls more than 3 
standard deviations outside the mean value for that result. 
This provides a particularly powerful way to detect unusual 
or important events.  

Combining statistical analysis with sliding time windows 
can further extend the power of a CEP framework, for 
example, allowing us to compare the long-term average 
traded volume of a stock with the average traded volume in 
the last hour. EventSwarm provides the ability to calculate 
statistics on sliding time windows and use the statistics in 
expressions. 

8) Language, Expressiveness and Complexity 
There are two major approaches towards defining event 

patterns and abstractions in CEP: on one side there are 
approaches using domain specific languages, often based on 
SQL (e.g. Esper [13]); on the other side there are approaches 
based on general purpose programming languages. Both 
have strengths and weaknesses, notably: 

• Domain specific languages can provide a more 
approachable learning path and hide complexity in 
the query processor and optimizer; programming 
frameworks typically require a deeper understanding 
of the concepts and implementation, thus a longer 
learning curve. 

• Hiding complexity in a domain specific language 
typically reduces flexibility and expressiveness (e.g. 
distribution, parallelism as discussed below); 
programming frameworks based on a general 
purpose language give access to all facilities 
available in that language, thus maximizing 
flexibility and expressiveness. 

• Lack of standardization across domain specific 
languages means that experts are uncommon and 
users rely on the CEP vendor to resource projects; 
programmers are readily available to resource 
projects when a general purpose programming 
language is used. 

Note that in all cases, there is potential to define patterns 
or abstractions that quickly exhaust the available resources 
due to combinatorial explosion. There is also no guarantee 
that expressions correctly match the behaviours required for 
the underlying business need. Thus a domain specific 
language does not absolve users of the need for a software 
development lifecycle including requirements gathering, 
implementation, testing and deployment, but it can reduce 
the cost of the implementation phase for simple patterns. 
This implementation advantage is eroded as complexity 
increases. 

EventSwarm provides a programming framework based 
on the Java programming language. 

9) Distribution and Scalability 
The increasing volumes of raw data being generated by 

systems today require distribution and horizontal scalability 
to effectively apply real-time analytics. A common term now 
used for this voluminous data is big data in motion. CEP 
systems differ considerably in their approach to distribution 
and scalability, and the approach often depends on the choice 
of a domain specific language versus a programming 
framework, as discussed previously. The relative scalability 
is characterized as follows: 

• Domain specific languages typically have system-
determined distribution and parallelism. Such 
languages often imply a degree of shared state, 
limiting the ability to distribute pattern execution. 
Coarse-grained distribution is typically handled 
through manual deployment of separate instances.  

• Programming language component-based 
approaches provide pattern and abstraction 
components that can be distributed according to their 
semantic constraints and the business need, and then 
connected using raw or abstracted event feeds. This 
is typically more flexible than domain specific 
languages for distribution and parallelism, but the 
construction of applications can be more complex 
and error-prone. 

• Event-driven approaches extend component-based 
approaches by requiring that the behaviour of each 
component is a function of the input events. These 
approaches can allow arbitrary distribution and 
massive scalability because behaviour is consistent 
in the face of both distribution and parallelism.  

EventSwarm uses an event-driven approach, where 
distribution capability is implicit in the semantics. It also 
provides some useful, semantically-consistent abstractions 
for parallelization 

In our experience, a key scalability dimension for all 
implementations is memory usage. In-memory processing is 
required for low-latency evaluation of patterns and 
abstractions but this limits the capacity of a processing node. 
Storing events on disk provides greater scalability, but 
increases latency and complexity. Thus there is a trade-off 
between in-memory and disk-backed event processing. 
EventSwarm is focused on in-memory processing, with 
filtering and distribution capabilities used to achieve the 
necessary scalability.  

10) Near-real-time capability 
The majority of CEP systems evaluate expressions, 

patterns and other abstractions continuously as events arrive 
at the point of processing. As such, they may be considered 
to have near real-time capability. Some CEP solutions rely 
on storing events in an in-memory database and periodic 
evaluation of queries. This caching and periodic evaluation 
increases latency and typically increases memory and 
computing capacity requirements for the software.   

The EventSwarm framework operates continuously as 
events arrive, and thus can be considered near real-time. 



C. EventSwarm Architecture and Usage 
As discussed in preceding sections, EventSwarm 

implements a near-real-time, event-driven approach to CEP. 
It provides a range of predefined abstractions and pattern 
components implemented in the Java programming 
language. There are two typical styles of application built 
using this framework: 

1. Applications built for specific, pre-defined patterns 
or abstractions 

2. Domain-specific applications that allow end users to 
define new patterns 

In both cases, the following activities are required in 
building the application: 

1. Identifying types of events and their sources 
2. Implementing channels to collect events from 

previously unimplemented sources 
3. Implementing actions required when a pattern or 

abstraction is matched 
For applications built to match specific, pre-defined 

patterns, the necessary patterns and abstractions are coded in 
the application and tested statically. For applications that 
allow users to define domain-specific patterns, the following 
additional steps are required: 

1. Identifying the types of patterns required to meet 
business needs 

2. Implementing a user interface that allows the user to 
safely and conveniently define new patterns of the 
identified types and select relevant actions 

3. Implementing mechanisms to generate and deploy 
new pattern instances with associated actions 

As discussed in the preceding subsections, the usual 
software development lifecycle phases apply for both pre-
defined and user-defined patterns.  

For applications that allow definition of new patterns, we 
typically use Ruby and its JRuby runtime to build the user 
interface and pattern instance configurations. In doing so, we 
couple the performance of Java execution for event 
processing with the flexibility of Ruby for the more 
dynamic, user-oriented tasks. 

The design of EventSwarm is intended to support lean, 
agile and focused solution development. The application 
described in this paper, for example, was built to proof-of-
concept state in two weeks, including tools for generation of 
test data and an optimized HL7 parser.   

IV. APPLYING EVENTSWARM TO ORDERS AND RESULTS 
In this section, we provide an introduction to the 

technical details of HL7 v2 messaging and describe how 
EventSwarm is configured to monitor the data quality and 
cost metrics described in section II.  

A. HL7 v2 Messaging 
The healthcare industry in the USA, Australia and many 

other countries predominantly uses HL7 version 2 (v2) 
messages to transmit laboratory orders, results and other 
clinical information. For example in Australia, over 90% of 
pathology reports were delivered electronically as HL7 v2 
messages in 2012. Individual messages are transmitted in a 

"fire and forget" manner with distinguished 
acknowledgement messages to confirm delivery and 
acceptance. HL7 v2 was originally designed to operate over 
an OSI 7-layer network architecture but messages are more 
commonly transmitted using TCP/IP and associated 
protocols in current implementations.  

The HL7 v2 standards define a large number of different 
message types [2], each identified by a 3-alphabetic-
character prefix to indicate a functional type (e.g. order 
message), followed by a caret and a more specific content 
type. For example, ORM^O01 identifies a general order 
message and ORU^R01 identifies an unsolicited observation 
result. The content of each message is organized into 
segments, with each segment also having a type identifier, 
for example, an OBX segment contains a clinical observation 
or result. All messages have an MSH segment containing 
message header information. Within each segment there can 
be data-elements with fields and sub-fields. Segments can 
also have nested segments. Values within segments are 
typed, including numeric, coded text and free text.  Coded 
text fields are taken from a well-defined namespace  (i.e. a 
pre-defined enumeration of text tokens). The example 
depicted in Figure 1. shows a sample OBX segment and 
describes its components: 

OBX|27|NM|14927-8^Triglycerides^LN||0.9|mmol/L^^ISO+|0.3-4.0||||F
...

Segment
type

Set
id

Value
type

Observation
id

Observation
value

Units Reference
range

Result
status

 
Figure 1.  HL7 v2 OBX Segment] 

Thus extracting data from an HL7 message involves 
parsing the message, finding the segment or segments that 
contain the required data, and extracting the value from the 
field.  

There are a few key issues associated with processing 
HL7 v2 laboratory orders and messages, specifically: 

• Segments may by typed FT (free text) and thus 
intended for human interpretation. It is difficult for 
an analytics engine like EventSwarm to 
deterministically evaluate these free text fields, 
although work reported in [22] shows promise. 

• Coding systems and value types vary widely, often 
differing across laboratories. Normalization is 
sometimes possible but not feasible in the general 
case, thus processing rules might need to be specific 
to a laboratory.  

• De-jure and de-facto content standards with 
normative coding systems exist but are not always 
adhered to, with systems relying on the knowledge 
of clinicians to interpret results. Such content 
standards are typically country-specific. 

• Coded values sometimes allow extension, that is, the 
value can be selected from an enumeration or a 
custom value can be used. Such custom values 



introduce complexity and non-determinism into 
rules, especially where such rules are used across 
health jurisdictions or organizations.  

To a great extent, the issues above arise because HL7 v2 
message content was primarily intended for human 
consumption first and machine processing second. The 
subsequent sections describe the design of a monitoring 
solution that takes these issues into account.  

It is worth noting that the HL7 v2 format is relatively 
compact. HL7 version 3 and the associated Clinical 
Document Architecture (CDA) standards use XML as the 
base syntax. The advantages are improved structuring and 
off-the-shelf parsing and validation tools, but this comes at 
the expense of compactness and processing overheads. For 
real-time analytics at the scale required for our operational 
context, the compactness and lower processing overhead of 
HL7 v2 is a significant advantage. 

B. Operational Context 
The assumed operational context for this solution is 

within a large integrated healthcare delivery organisation 
providing healthcare services for its members. The 
organisation is national in scope but with regional 
operations. The focus of the implementation is on pathology 
orders. The scale of the organisation in terms of laboratory 
orders and results is characterized by the following metrics: 

• 1,000,000 pathology orders per day 
• approximately 50% of pathology orders have 

distinguished test identifiers (i.e. not free text 
descriptions) 

• approximately 2% of pathology orders contain 
duplicate tests 

• Each laboratory processes and average of 50,000 
orders per day 

• Current average detection time for laboratory data 
quality issues is 1 day  

It is worthwhile to consider the scale of this solution, and 
in particular, the memory requirements associated with 
duplicate order detection. For an in-memory implementation 
and assuming a 30-day duplicate detection window, non-
distributed approach would need to hold 30,000,000 records 
in memory. At 1KB per order, that equates to 30GB of 
memory. The processing and deployment architectures 
described in subsequent sections aim to reduce this memory 
footprint as much as possible. In most cases, a single 
instance of EventSwarm on a modern multi-core CPU will 
be able to process this volume of messages and the 
associated expressions with capacity to spare. Network and 
IO bandwidth considerations could pose problems for a 
centralized solution, suggesting a regional solution might be 
appropriate. Further discussion relating to regional 
deployment is presented in the following section.  

C. Design Overview 
Our solution operates as follows: 
1. Extract a copy of each message transmitted to and 

from a laboratory through intercepting the message 
in the middleware infrastructure, or through having 

the source system send a copy of the message to an 
EventSwarm processing node; 

2. Feed each message into a configuration of 
EventSwarm processing components that implement 
rules for data quality and duplicate orders; and 

3. Send an alert to the laboratory operator when a 
message matches an alerting rule. 

This high-level design is depicted in Figure 2.   
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Figure 2.  Functional architecture 

The data quality metrics require pre-loading of historical 
data to establish a stable statistical profile for messaging, 
thus our EventSwarm solution also provides a mechanism to 
pre-load historical data. It allows historical data to be pushed 
through the solution to establish a baseline prior to 
connection to a live data feed. This data is readily available 
in laboratory environments due to healthcare archiving 
requirements. The baseline is extended as new messages are 
processed, providing increased statistical stability over time.  

EventSwarm processing nodes are deployed either 
regionally or per laboratory to ensure scalability and low 
latency. This deployment reflects the usual manner of health-
care delivery, that is, a patient will typically receive all of 
their health care services within their home region, and will 
typically have laboratory tests of a particular type processed 
at a single laboratory site. Localization also minimizes the 
variation arising from differences in content types and 
coding systems, for example, issues associated with coding 
extensions discussed in A.  Further, localized deployment 
provides basis for incremental deployment and evaluation of 
benefits before progressing to larger scale deployments. This 
deployment architecture is depicted in Figure 3.  
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Figure 3.  Deployment architecture 



D. Message interception 
In the operational context, messages are transmitted to 

and from the laboratory using message-oriented middleware. 
EventSwarm can connect directly to the middleware and 
receive copies of all messages as they flow through the 
organisation. 

E. Data Quality Monitoring  
The data quality monitoring configuration is intended to 

detect instances where numeric observations match the rules 
identified in section II, that is: 

1. A numeric observation is more than 3 standard 
deviations from the mean; 

2. At least 2 of the last 3 numeric observations are 
more than 2 standard deviations from the mean; 

3. At least 4 of the last 5 numeric observations are 
more than 1 standard deviation from the mean; and 

4. The last 6 numeric observations are all on the same 
side of the mean. 

In contrast to [4], we are able to apply these rules to all 
numeric observations in a message rather than a single 
observation, grouping them by the observation type id in the 
OBX segment containing the observation. The configuration 
of components is depicted in Figure 4.  This configuration is 
attached to a stream of laboratory reports. 
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Figure 4.  Data quality monitoring configuration 

The configuration of components is described as follows, 
in order of processing: 

1. We first apply a filter to exclude reports that do not 
contain any numeric observations. 

2. We then split the reports using a powerset to 
maintain a subset for each numeric observation type 
id. If a report has multiple numeric observations, 
then it will be added to the subset for each of those 
types (i.e. the subsets intersect). 

3. A statistics abstraction is attached to each subset, 
maintaining statistics for all observations of that 
type. 

4. Four monitoring expressions are also attached to the 
subset, with references to the historical mean and 
standard deviation maintained by the statistics 
abstraction: 

a. rule 1 above is directly evaluated by 
comparing the current observation with the 
historical mean, firing if the observation 
value is more than 3 standard deviations 
from the mean. 

b. rules 2 through 4 above use a LastN 
window to capture the last N observations, 
and a MatchCount expression to detect 
when more than M observations satisfy the 

statistical expression. For example, rule 3 
would use a LastN window with a size of 5 
and a MatchCount expression that fires 
when 4 of the collected observations have 
values greater than 1 standard deviation 
from the mean. 

5. For each monitoring configuration, two actions are 
connected: 

a. An action to notify the laboratory operator 
when a match occurs, including a URL for 
a page that can display the matching 
message(s) 

b. An action to store the matching message(s) 
on disk for subsequent audit and 
investigation 

The majority of processing components used in this 
configuration are off-the-shelf components from the 
EventSwarm framework. Components that were added 
specifically for this configuration were: 

1. Components to parse HL7 messages and extract data 
from those messages. These components are re-
usable in any other EventSwarm application using 
HL7 messages. 

2. Components to render matching HL7 messages for 
display to the laboratory operator.  

3. A custom action component to integrate with the 
proprietary notification system used in the 
operational context.  

Note that this configuration has predictable memory 
requirements, since we only need to maintain the last 6 
observations of each type in memory.  

Initial and subsequent loading of historical data is 
achieved by establishing the configuration without any 
monitoring expressions or actions configured, then 
processing the historical documents. Once historical data is 
loaded, the monitoring expressions and actions are added. If 
required for speed of restarts, a future extension might persist 
the statistical abstraction. 

F. Duplicate Order Monitoring  
The duplicate order monitoring component is required to 

detect duplicate laboratory orders for a patient in a defined 
time window. As discussed in section IV-B, the scale of 
duplicate detection is significant so we have explored the 
business problem to identify ways that the scale can be 
contained without sacrificing any business benefits. There 
are a number of key characteristics of the rules that allow us 
to contain the scale: 

1. The useful lifetime of the test results varies for each 
test. For example, a full blood count has a useful life 
of about 30 days, thus duplicates should be detected 
in a 30-day window. In contrast an INR (blood 
clotting time) has a useful life of about 4 days, thus 
duplicates should be detected in a 4 day window. 
Shorter windows can significantly reduce memory 
requirements. 

2. Some tests are inexpensive and unobtrusive for the 
patient. Duplicate detection on such tests has limited 
benefits. Other tests are particularly expensive or 



intrusive, so focusing on such tests can deliver 
maximum value from the monitoring.  

3. It is inappropriate for the system to reject duplicate 
orders. Orders will sometimes have associated free 
text to indicate why a duplicate has been ordered, 
and in some cases the previous test results might not 
be accessible to the requesting clinician (e.g. for 
privacy or other reasons). Thus an operator will have 
to intervene to determine an appropriate 
rectification. This increases the cost of rectification, 
particularly if the ordering clinician must be 
consulted. The cost of rectification needs to be 
weighed against the cost and intrusiveness of the 
test. 

We are able to configure duplicate detection using the 
above business considerations to reduce memory 
requirements. In particular, we use a "white-list" of test types 
to identify tests for which the benefit of duplicate detection 
outweighs the cost. The use of regional processing nodes 
also allows us to reduce the scale of any single processing 
node. The configuration of components is depicted in Figure 
5.  
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Figure 5.  Duplicate order monitoring configuration 

This configuration of components is described as 
follows, in order of processing. 

1. Orders are first filtered against a configurable white-
list of tests. If no listed tests are present in the order, 
the order is ignored. 

2. Orders are split using a powerset to maintain a 
subset for each test type. The useful life of each 
white-listed test is also maintained, and the subsets 
of the powerset are configured to use a sliding time 
window with a size equivalent to the useful life of 
the test. Note that since an order might contain 
multiple tests, that order can appear in multiple 
subsets. 

3. Orders for each test are split again using a powerset 
to maintain a subset for each patient using the patient 
identifier information in the order. 

4. For each patient subset, a threshold monitor is 
attached, firing any registered actions when the size 
of the set is greater than one 

5. Two actions are connected to each threshold 
monitor: 

a. An action to notify the laboratory operator 
when a duplicate is detected, including a 
URL for a page that can display the 
matching message(s) 

b. An action to save the orders for future audit 
and investigation 

It is instructive to note that a sliding time window 
propagates event removals through the downstream 
configuration, meaning that test orders older than the useful 
life of the test (i.e. outside the time window) are 
automatically removed from any downstream sets.  

As with the configuration for data quality monitoring, the 
majority of this processing is performed using off-the-shelf 
components from the EventSwarm framework. The new 
HL7, rendering and action components described in the 
preceding section are re-used here, leaving only two new 
components for this monitoring: 

1. A white list matching component. This is a simple 
extension of an existing class in EventSwarm. 

2. A set factory component to create test-specific 
sliding time windows. This is used by the powerset 
to create subsets test type. 

 The memory usage of this configuration on a per-
laboratory basis is estimated as follows: 

  50000 ∗ 50% ∗ white list% ∗ mean life ∗ size 

That is, number of daily events reduced by 50% to 
exclude unstructured orders, and reduced by the percentage 
of orders that match the white list, multiplied by the mean 
life in days of the white-listed tests. If we assume a white-
listed volume of 30%, a mean life of 10 days, and an average 
order size of 1KB, we get: 

  50,000 ∗ 0.5 ∗ 0.3 ∗ 10 ∗ 1ΚΒ  = 75,000ΚΒ or 75ΜΒ 

Thus our configuration is easily capable of residing in-
memory on a single processing node.  

V. DISCUSSION AND FUTURE WORK 
In this paper we show how a CEP approach can be used 

to implement real-time analytics against existing healthcare 
messaging and improve HIT safety and efficiency. This is 
achieved through monitoring statistical quality metrics 
against pathology laboratory reports and through detection of 
duplicates in pathology orders. Alerts are used to notify 
necessary parties when quality issues or duplicates are 
detected. 

We have implemented this solution using test data 
derived from messages used for conformance testing against 
Australian HL7 v2 pathology messaging standards. The 
solution has been demonstrated to a selected set of 
stakeholders. As suggested by our analysis, the memory 
requirements of the solution are well-contained. The 
duplicate detection and data quality solutions are able to 
process 2000-3000 HL7 v2 messages per second each on a 
single CPU core, which is more than adequate for likely 
deployment scenarios.  

This experience provides a basis for the implementation 
of other, similar applications based on monitoring of HL7 v2 
messages, including those that involve natural language 
description of medical terms as reported for example in [22] 
in which they generate structured documents for cancer 
reports from natural language observations. In addition, 



EventSwarm could be also used to detect network problems 
or problems with laboratory equipment or other medical 
devices if they support access points for operational quality 
checking.  

In general, CEP can be used in many other eHealth 
applications, for example: i) real-time monitoring of patient 
conditions in intensive care units, where similar surveillance 
of patient condition indicators could be used to detect critical 
changes in patient condition; ii) detection of disease 
outbreaks through monitoring a combination of streams 
including social networking, clinical information systems 
and messaging to registries of reportable diseases; iii) 
detecting fraud in e-Medication systems such as attempts to 
request multiple doses of the same drug; and iv) exchange of 
alerts between health providers and emergency services 
organizations to assist in crisis management scenarios. 

CEP can be also used in detecting non-clinical causes of 
harm to patients such as those arising from suspicious 
cybercrime activities as indicated in [4] or possible violations 
of privacy policies. Finally, CEP can be used to facilitate 
better care coordination interactions, for example: i) 
laboratory alerting systems that apply clinical decision 
support to identify critical results and page physicians when 
they occur [19]; ii) the detection of delays in healthcare 
delivery as specified in the recently proposed care 
coordination service [21]; and iii) to remind patients to take 
medication or make an appointment associated with a 
referral.  

We intend to further experiment with other uses of 
EventSwarm in healthcare, both to improve safety of HIT 
systems and also to support other monitoring and alerting 
applications in eHealth as discussed above.  

VI. CONCLUSIONS 
This paper describes the architecture and implementation 

of a real-time analytics solution to support improving quality 
and safety of HIT systems and reducing unnecessary costs 
due to inadvertent issue of duplicate lab orders. The solution 
applies syndromic surveillance approach over HL7 v2 
messages received and transmitted by clinical laboratory 
systems. The paper extends work of Ong et al [4] who 
demonstrated the feasibility of syndromic surveillance 
algorithm for monitoring of HIT systems. The novelty of our 
approach is in designing and implementing syndromic 
surveillance rules in a large and complex healthcare 
environment with minimal disruption to existing HIT 
environments through interception and analysis of HL7 v2 
messages.  

We believe this is the first reported application of a CEP 
technology for monitoring of quality and safety in HIT 
systems, and should pave the way for ongoing improvements 
in HIT system quality and safety through real-time analytics. 

The paper also presents a review of capabilities and 
semantics of CEP technologies, highlighting the flexibility, 
utility and novel features of the EventSwarm CEP 
framework. While implementations of this technology are 
relatively mature, there are many factors that influence the 
ability to provide near-real-time analytics for big data in 

motion. The results presented in this paper demonstrate the 
ability of EventSwarm to provide such solutions. 
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