
February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

International Journal of Cooperative Information Systems
c© World Scientific Publishing Company

EXTENDING CHOREOGRAPHY WITH BUSINESS CONTRACT
CONSTRAINTS

ANDREW BERRY

<andyb@whyanbeel.net>
Brisbane QLD

Australia

ZORAN MILOSEVIC

<zoran@dstc.edu.au>

Distributed Systems Technology Centre

University of Queensland
Brisbane QLD 4072

Australia

Business contracts play a central role in governing commercial interactions between

organizations. It is increasingly recognized that business contract conditions need to be
closely linked to internal and external business processes, both to reduce the risk of con-

tract violations and to ensure compliance with legislative regimes. Recent research has

proposed contract languages allowing the specification of obligations, permissions and
prohibitions in business contracts. Business processes that cross organizational bound-

aries can be specified in choreography and coordination languages but these do not

provide appropriate abstractions for contract constraints. In this paper, we examine the
transformation of contract constraints in a business contract language into expressions

in a choreography language. An example cross-organizational process is presented, along
with a specification of the process in a choreography language and a specification of a

set of contract conditions for the process in a business contract language. The contract

terms are then translated into choreography expressions that govern the process to en-
sure compliance. Subsequent discussion explores a number of business and technology

issues related to the results. We conclude that cross-organizational business processes

can be monitored and enforced according to business contract specifications through the
transformation of a contract definition to constraints on process behavior.

Keywords: Choreography; Business contracts; Business events; Policy Modelling.

1. Introduction

Business contracts play a central role in governing commercial interactions between
organizations. It is increasingly recognized that business contract conditions need
to be closely linked to internal and external business processes in E-business ap-
plications, both to reduce the risk of contract violations and to ensure compliance
with legislation23,39,38. Recent research has proposed business contract languages
allowing the specification of obligations, permissions and prohibitions from business

1

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

2 Extending choreography with contract constraints

contracts15,35,29,42. These languages facilitate integration of business contract spec-
ifications with cross-enterprise interaction models. The aim is to allow specifications
in such contract languages to be used more directly in the execution and monitor-
ing of business processes. Contract languages provide domain-specific abstractions
that enable organizations to precisely describe contract conditions. This precise
capture of contracts supports the deployment of contract management systems for
any cross-organizational process and any vertical domain. By comparison, the cur-
rent commercial applications are predominantly document-oriented contract man-
agement systems for common business processes like procurement11,17,34,40. These
systems are also concerned primarily with the perspective of a single organization.

In parallel with this work in support of electronic contracts, the maturity of
technology for the co-ordination of activities or processes spanning multiple organi-
zations is improving. The term choreography is being used to describe the descrip-
tion and implementation of processes without centralized control, typically spanning
organizations24. Recent work in the W3C consortium is focusing on so-called web
services choreography (WS-CDL)18 and the OASIS consortium is working to ensure
that the ebXML standards14,12 are capable of describing and supporting chore-
ography. The primitives in choreography languages have been guided by previous
work on co-ordination languages8,4 and the semantics of specification languages for
distributed processes, particularly pi calculus26. While these languages provide ab-
stractions for describing cross-organizational interaction, the abstractions are not
aligned with the needs of business people describing contract constraints.

This paper examines how contract terms in business contract languages can
be transformed into expressions in choreography languages. This is done in a con-
crete fashion by presenting a sample cross-organizational purchasing process, along
with a specification of the process in the Finesse choreography language3 and a
specification of the contract terms for the process in Business Contract Language
(BCL)23,29. The contract terms are then translated into Finesse expressions that
govern the process to ensure compliance and identify contract violations. Such a
translation between a business contract specification and a process definition illus-
trates how rules and policies in business contracts can be used in the design of
processes for E-commerce and E-business platforms. We contend that translation
from contract to process terms will be an important tool in electronically-enabled
businesses of the future.

In the remainder of the paper, section 2 describes a purchasing process and
defines a set of contract terms for that process in plain English. The Finesse and
BCL technologies are introduced and used to specify this purchasing process and
its contract terms respectively. We then describe a mapping from the BCL contract
terms to equivalent Finesse language expressions in section 3, combining these ex-
pressions with the original Finesse process definition to produce a Finesse process
augmented with contract constraints. The result is an augmented process definition
that monitors and controls the execution to ensure that the contract terms are sat-

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 3

isfied. This is followed in section 4 by a discussion of the issues uncovered, including
the semantic differences between contract terms and choreography expressions and
the need to choose between in-band and out-of-band mechanisms to ensure contract
compliance. Since the paper is intended to highlight issues in transforming business
contract languages with choreography in the general case, section 5 identifies tech-
nologies similar to BCL and Finesse and discusses their strengths and weaknesses
in supporting this transformation.

2. Finesse and BCL

This section informally describes a purchasing process involving a purchaser, sup-
plier and freight company. A contract governing that process is presented in English,
and the need for monitoring and enforcement of that contract justified. The Finesse
and BCL technologies are described, and these informal process and contract def-
initions are presented in Finesse and BCL respectively. These code examples are
used to drive the transformation described in section 3.

2.1. Informal process definition

The purchasing process is summarized as follows:

(1) The purchaser places a purchase order.
(2) The supplier receives a copy of the purchase order.
(3) The supplier fills the order and notifies the freighter that it is ready for shipment.
(4) The freighter collects the goods from the supplier and delivers them to the

purchaser.
(5) The supplier invoices the purchaser for the goods delivered
(6) The purchaser pays for the goods.

Note that only activities relevant to the cross-enterprise process are identified
in this description: internal activities not visible or relevant to the collaboration are
omitted. This definition of externally visible activities and their relationships is the
domain of choreography definition languages like Finesse and WS-CDL. Business
contracts are similarly defined in terms of the externally visible activities and their
relationships.

2.2. Plain English contract

The contract for the purchasing process involves three parties: purchaser, supplier
and freighter based on the process definition presented in the preceding section.
The following terms apply to the contract:

(1) The purchaser has an agreed credit limit with the supplier. The credit limit is
a maximum outstanding amount with no particular time limit. The purchaser
is not permitted to exceed the credit limit.

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

4 Extending choreography with contract constraints

(2) The supplier is permitted to provide an invoice immediately after goods delivery.
(3) The purchaser is obliged to pay the balance of the invoice within 30 days of the

billing date and time.
(4) The supplier is obliged to have goods ready for shipment within 5 days of receipt

of a purchase order.
(5) The freighter is obliged to deliver goods within 5 days of being notified that the

shipment is ready.

2.3. The need for contract monitoring and enforcement

The process definition of section 2.1 describes an expected sequence of activities in
the cross-organizational, collaborative business process. These are intended to be
governed by the contract defined in section 2.2. There are many situations in the
execution of business activities that could lead to the violation of policies stated in
the contract. On one hand, a party to the contract might choose not to fulfill their
contractual obligations because they can obtain greater value through involvement
in some other collaboration, despite penalties for a breach. On the other hand there
might be circumstances beyond the control of any party to the contract that can
lead to violations of contract conditions, for example communication failure. In order
to protect parties to the contract, there needs to be monitoring and enforcement
mechanisms associated with the process to ensure the fulfillment of obligations and
other policies, preferably in real-time. Subsequent sections introduced the Finesse
and BCL languages then demonstrate how BCL can be used to specify contract
conditions, and how Finesse can be used to define the business process and embed
monitoring and enforcement mechanisms based on the BCL contract specification.

2.4. Finesse

Finesse is a system that provides an operational semantics, language and execution
engine for co-ordination of behavior across distributed, autonomous participants3.
The concepts embodied in these elements are taken from the A1

√
architecture

model5. This model describes distributed computations in terms of the autonomous
objects or participants that execute local behavior, and a binding that defines the in-
teractions between visible behaviors of participants. A binding can have pre-defined
semantics, for example remote procedure call, or can be programmable. This use
of the term binding is also present in the ISO/IEC Reference Model for Open Dis-
tributed Processing (RM-ODP)36. The Finesse language is a high-level language for
programming bindings, and the the operational semantics formally defines a general
model for the execution of bindings in a distributed environment with no shared
state.

The Finesse language is used in the remainder of this paper to describe processes
and choreography and the term Finesse is used in those sections to refer to the
language rather than the execution engine or operational semantics. The following
subsections provide an overview of the language syntax and semantics, and the use

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 5

of this syntax is illustrated by defining our example process in section 2.5. In the
following text, Finesse samples are highlighted through the use of a fixed-width font
like this.

The Finesse language is perhaps best described as a coordination language and a
description of the language has previously been published in that research sphere4.
The syntax and structuring concepts of the language, however, have grown from
the needs of open distributed processing5. The language is intended to describe
the behavior and coordination of autonomous software components in an open,
distributed environment. As such, it bears only a minimal resemblance to existing
programming language syntax, including interface definition languages like CORBA
IDL or WSDL (Web Services Definition Language).

A Finesse program or Binding is defined in terms of a set of roles capturing
visible behavior of participants and a set of interactions, defining the interactions
between roles. Both role and interaction behavior is defined in terms of events and
their causal, temporal and parameter relationships. Finesse has some key charac-
teristics that distinguish it from other languages:

(1) Finesse abstracts over communication, allowing transformation of data and
compiler or run-time optimization of message passing between components.

(2) Finesse includes a representation of time, allowing the specification of temporal
properties.

(3) Finesse is independent of the programming language and infrastructure used
to implement distributed components. Participants in a Finesse Binding could
be, for example, process engines, custom software components or web services.

(4) Finesse provides an abstract model for multicast and other group behavior
through roles having non-unary cardinality.

(5) Finesse explicitly distinguishes between co-located and distributed behavior
through separate specification of roles and interactions respectively. It uses a
common semantic model for those behaviors, however.

2.4.1. Basic Syntax and Structure

A Finesse binding has an outer scope introduced by the keyword Binding and the
name of the binding. This outer scope defines the program boundary: all behavior
present in the binding must be described in this scope. A set of Import statements
can appear at the beginning of this scope. An Import statement identifies another
binding program whose behavior definitions can be referenced and re-used in this
binding.

This opening is followed by two sections defining roles and interactions. The
Roles section defines the required behavior of participating components, and the
Interactions section defines the relationship between events at different roles.
Braces ({...}) are used to delimit the scope of definitions. Note that in the following
examples, ellipses (...) are used to avoid including unnecessary detail and are not

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

6 Extending choreography with contract constraints

a syntactic construct. The basic structure is thus:

Binding Example {

Import ...;

Roles {

...

}

Interactions {

...

}

}

2.4.2. Describing Roles

A binding has one or more role definitions in the Roles section, each introduced by
a role name. A role definition can be prefixed with a cardinality constraint enclosed
in square braces [], which constrains the number of participants that can fill a role
in a single binding instance (process execution). The place-holder # represents the
actual cardinality. Where no cardinality constraint is given, the default cardinality
is exactly one, for example:

Roles {

Client { ... }

[#>=1] Server { ... }

}

This specifies that there are two roles, Client and Server and that there is
exactly one Client participant and at least one Server participant in the binding.

Roles define local or co-located behavior. Behavior described within a role takes
the form of event relationship specifications. In terms of the Finesse semantic
model3, these specifications connect event template definitions (see 2.4.4) using a
number of relationship operators and modifiers. These operators and modifiers are
discussed further in section 2.4.5. Where multiple participants can fill the role, each
participants executes the described behavior independently except where linked by
specifications in the Interactions section.

Roles can contain named behaviors that group together a set of event templates
and allow the Interactions section to refer to some subset of the role when defining
interaction behavior, for example the read and write behaviors in the following
code fragment:

Binding {

Roles {

Client {

read { ... } AND

write { ... }

}

...

}

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 7

Interactions {

Client.read ...

}

}

Named behaviors define a scope for event template names, allowing the role
definitions to re-use template names in a different context. Reference to such event
templates in the interactions section must include the role and any scope names,
e.g. using the example above Client.read.send.

2.4.3. Describing Interactions

The Interactions specification defines relationships between event templates oc-
curring at distinct role instances, that is, behavior that spans locations and implies
messaging. In the roles specification, event templates are introduced with a name
and a direction indicator. In the interactions specification, event templates are re-
ferred to by the role name, followed by a period ’.’, then the event template name.
This reference to an event template can also have a cardinality constraint to deal
with situations where multiple components fill the role. For example:

Binding Example {

Import ...;

Roles {

Client { send! }

[#>=1] Server { receive? }

}

Interactions {

Client.send -> [#=all] Server.receive

}

}

The place-holder # in the Interactions specification refers to the number of
components executing the event template, while the place-holder all refers to the
number of components filling the role in the binding instance. In the above example,
the client role executes a send event followed by all servers executing the receive

event. This binding is a high-level description of reliable multicast. Behavior de-
scribed in the interactions section cannot introduce new event templates: it can
only use event template names defined in the roles section.

2.4.4. Event Templates

The behavior within roles and interactions is defined by event templates and their
relationships. An event template describes the essential characteristics of an event
that can be executed at runtime, or in other words, a set of declarative constraints
on the event execution. Events in Finesse are considered to be atomic, immutable
and instantaneous occurrences with a specific location in both space and time.

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

8 Extending choreography with contract constraints

An event template is introduced in the roles section by a name, a direction
indicator, and a parameter list, for example:

e!(x:t1, y:t2)

where e is the event template name, ! indicates that it is an output event, x,y are
the event parameters, and t1,t2 are the data types of the parameters. Events are
uni-directional, that is, they can be input events or output events but not both. The
? character is used in place of the ! to indicate an input event. Input and output
are relative to the role, that is, an output event implies that the component filling
the role is providing parameter values, while an input event implies that binding
program execution is providing parameter values.

The direction indicator and parameter list are only included in the first speci-
fication of an event template. This means they can only appear in role definitions.
Where a template name appears more than once in a role definition or named block
(nested context), only the first can include these annotations.

2.4.5. Behavioral Model

Event relationships provide the basis for describing behavior in both the role and
interaction definitions of a binding. Event relationships capture the dependencies
between event templates in a binding. Three distinct types of event relationship are
identified:

Causal relationships which describe the causal dependencies between events;
Parameter relationships which describe the relationships between parameters

of causally related events. Parameter relationships imply the content of mes-
sages passed between interacting components, but in a declarative, application-
oriented manner;

Timing relationships which describe any real-time relationships between events.
These relationships can be used to describe, for example, timeouts or quality
of service requirements of interactions.

Relating these back to our purchasing process, causal relationships capture pro-
cess flow, parameter relationships capture data flow, and timing relationships allow
us to express temporal constraints that affect the process. These event relationship
concepts, combined with the notions of binding, role and interactions, provide a
powerful technique for the description of processes and choreography.

Causal relationships are defined using the -> operator between event template
names as used in both preceding and following code fragments. Parameter rela-
tionships are defined through declarative specification of event parameter values as
illustrated in the following code fragment:

e1!(x:t1, y:t2) -> e2?(z:t3) {z = f(e1.x)}

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 9

This specifies that the parameter z of event e2 is assigned the value resulting
from applying the function f to the value of e1.x. Parameter relationship specifica-
tions can refer to any parameter of an identifiable, causally preceding event. There
is no requirement that all parameters of any output event must be consumed by an
input event, and the parameters of an output event can be used many times. Due
to its common use in remote procedure call, Finesse has shorthand syntax for name
equivalence of parameters, that is:

e1!(x:t1, y:t2) -> e2?(x:t1, y:t2) {*= e1}

This specifies all parameters of e2 with names matching parameters in e1 are
assigned the value of that same-named parameter. There is no requirement that all
parameters in either e1 or e2 be assigned by the operator.

Temporal constraints are introduced through an explicit time attribute of all
events indicating the local time of execution. These time attributes can be referenced
in guards as discussed in the following subsection.

2.4.6. Guards

A guard is a logical expression that must be satisfied before an event can be exe-
cuted. This is in addition to any cardinality or causal predecessor constraints. They
are introduced using the following syntax:

[guard] e1!(x1, y:t2)

The guard is a logical expression and can refer to parameters of causally preced-
ing events in the same manner as parameter relationships. Where an event template
has both a guard and a cardinality constraint, they must be contained within the
same square braces and joined by a logical AND operator.

2.4.7. Control Expressions

Finesse supports three logical operators that can be used to join behavior expres-
sions, namely AND, OR and XOR. These operators have semantics consistent with their
use in other process logic. The language also has two looping expressions introduced
by the keywords while for guarded iteration and loop for unguarded iteration.

2.5. The purchasing process in Finesse

The purchasing process defined in section 2.1 is presented below in the Finesse lan-
guage. Note that the keyword prev is used to identify the immediately preceding
event template in the specification below. This shorthand is included in Finesse as
a syntactic convenience because many parameter relationships refer to the immedi-
ately preceding event template.

Binding PurchasingProcess {

Roles {

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

10 Extending choreography with contract constraints

Purchaser {

purchaseOrder!(o:EdifactPO) -> goodsDelivered?()

-> invoiceReceived(i:EdifactInvoice)

-> payment()

}

Freighter {

goodsReady?() -> pickupGoods!() -> deliverGoods!()

}

Supplier {

receiveOrder?(o:EdifactPO) -> fillOrder!()

-> orderFilled!()

-> deliveryConfirmed?()

-> invoicePurchaser!(i:EdifactInvoice)

-> paymentReceived?()

}

}

Interactions {

Purchaser.purchaseOrder ->

Supplier.receiveOrder{o = prev.o} AND

Supplier.orderFilled -> Freighter.goodsReady AND

Freighter.deliverGoods -> Purchaser.goodsDelivered AND

Freighter.deliverGoods -> Supplier.deliveryConfirmed AND

Supplier.invoicePurchaser ->

Purchaser.invoiceReceived{i = prev.i} AND

Purchaser.payment -> Supplier.paymentReceived

}

}

This Finesse binding program describes the three roles in our example, captur-
ing the local processes through causal relationships between event templates. The
interactions between the those processes are also captured using causal relation-
ships. Note that the use of a logical AND in the interactions to compose the event
relationships can also be used in the same manner to compose event relationships
in a role definition.

2.6. BCL

This section briefly describes each of the major constructs in BCL23,29 through text
and sample code fragments. The concrete syntax of BCL is an XML dialect. In this
paper we use an English pseudo-syntax for readability.

2.6.1. BCL overview

BCL has been developed for the specification of contract conditions so that contract
execution can be monitored against these conditions. This contract execution ulti-
mately refers to various activities of the signatories to the contract (and possibly
their agents). The monitoring is carried out in an event-based fashion and its aim
is to check whether these activities signify fulfillment or violation of policies agreed

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 11

in the contract.
Key characteristics of BCL are:

(1) BCL is a language providing abstractions related to the domain of business con-
tracts. In this respect BCL is similar to other languages specifically developed
to capture the semantics of specific business domains such as business processes,
business documents and so on.

(2) BCL syntax closely resembles natural language expression of contracts, namely
the expressions of deontic constraints21,41 such as obligations, permissions and
prohibitions. The BCL semantics is defined in terms of event pattern match-
ing, which can include expressions of state changes, temporal constraints and
event creation rules. This semantics is similar to that used in complex event
processing25.

(3) BCL is declarative language allowing domain experts to express contract con-
ditions and the system interprets these expressions to determine how contract
conditions should be monitored.

(4) BCL is an event-oriented and policy-based language where individual events
or their combinations are used as a basis for determining valid set of contract
conditions and these in turn determine the fulfillment or violations of policies.

Although the primary purpose of BCL was to support the expression of contract
monitoring conditions, its concepts could be used for describing contract semantics
for other contract automation purposes such as reasoning about contract struc-
ture and behavior. BCL can be thought of as an aspect-oriented language19 that
expresses business policies for processes.

BCL is an event-oriented language where an event is something that happens36.
A single event can be used to signify an action of a signatory or some change
arising from the environment that has relevance to the contract. This could be,
for example, a change in regulatory or market conditions or a temporal occurrence
such as a deadline. An event can also be generated within the contract management
system to facilitate other monitoring or enforcement activities: this is known in BCL
as an event creation rule. An event is characterized in BCL by a type definition.
This definition includes:

• common parameters in its header, such as the timestamp when it was generated
and the timestamp when it is ended, if it has duration;

• a list of its causal predecessors (if any); and
• a body which contains information about what occurrence this event signifies,

for example, a purchase order document.

The following code fragment, for example, specifies that a purchase order event
is signified by the existence of an XML document conforming to the EDIFACT
PurchaseOrder XML schema. In this and subsequent code fragments, BCL terms
are highlighted through use of italicized courier font like this . Ellipses (...) are
used to avoid including unnecessary detail and are not a syntactic construct. We

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

12 Extending choreography with contract constraints

also use descriptive tokens enclosed in <> to identify the nature of the content
without specifying detail.

Event typeID = PurchaseOrder
HeaderInfo

TimeStampStart
TimeStampEnd
...

BodyInfo
<XMLSchema for EDIFACT PurchaseOrder>

2.6.2. Event Pattern

A BCL event pattern is a means for describing a state of affairs of significance for
the monitoring of contract constraints. A state of affairs captures both the effects of
actions of parties involved in contract-related activities and environmental effects
such as change in regulatory policies. The effects are captured using the concept
of event as described in the previous section. A state of affairs can range from el-
ementary conditions, such as the occurrence of a particular action performed by
a party or the passing of a deadline, to more complex conditions, such as “more
than three system failures in any a one week period” or “one of the contract con-
ditions has been violated”. More specifically, event patterns express relationships
between events and properties of events. As events occur, they activate event pat-
terns, with the aim of determining whether a specific relationship between events
(state of affairs) has ocurred. The primary use of event patterns in BCL to define
policy checking behavior as described in section 2.6.4 below. Examples of event
relationships are:

(1) Logical relationships between events, specifically AND, ORand NOT.
(2) Temporal relationships between events, for example before and after .
(3) Temporal constraints on event patterns, for example absolute and relative dead-

lines and sliding time windows.
(4) Event causality, including causality implied by temporal relationships and ex-

plicit definition of causal relationships.
(5) Certain special kinds of single events, for example contract violation and state

change events.

The most primitive event pattern is a singleton event pattern. Individual events
are matched by event type and possibly some additional constraints on attributes
of the event. A singleton event pattern is thus:

Event typeId = PurchaseOrder

A singleton event pattern in BCL can also involve multiple EventRoles using
the following syntax:

Event typeId=PurchaseOrder
EventRole name=Buyer

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 13

EventRole name=Seller

Event roles provide a mechanism for abstraction and re-use. They abstract over
synchronization behavior, specifying that the identified roles must synchronize on
the nominated event. They can also be re-used in multiple contexts. For example in
the code above, we can infer the condition that the event matches both the sending
and receipt of a message in a process and that the pattern will match only if the
sender has the Buyer role and the nominated receiver has the Seller role. In
business modelling, this construct provides a re-usable approach to checking the
association of event roles with community roles (see 2.6.6), for example, to ensure
that role-based security policies are satisfied.

Event patterns matching multiple related events are used to identify more com-
plex contract conditions such as temporal dependencies, causal dependencies and
parallelism. For example, an event pattern defining the maximum time between
the OrderFilled event and the PurchaseOrder event in a purchasing contract
looks like:

OrderFilled before (PurchaseOrder add 5 days)

A further example presents a more complex event pattern specifying how to
identify payments received within an acceptable timeframe:

Payment before (Invoice add 30 days)
OR
(Payment after (Invoice add 30 days)

AND NOT HasOccured(OverDuePayment,
Range(LowerBound(Now() less 6 months),

UpperBound(Now()))))

In this case, the normal behavior is to pay within 30 days of the invoice, but we
have allowed an overdue payment to occur at most once in a six month period.

2.6.3. Event Creation Rule

BCL allows an event pattern to be abstracted through an event creation rule (ECR).
An event creation rule defines a new event that is created when an event pattern
is matched. This can simplify policies and support re-use, allowing policies to refer
to a single composite event. This definition of composite events is similar to the
event-condition-action paradigm from active databases43.

2.6.4. Policy

A BCL Policy defines behavioral constraints for the roles that execute activities
associated with a contract. Policies are checked by comparing the current state
of affairs with these constraints. The constraints are defined through identifying a
role, a modality and a condition expressed as an event pattern. Thus, BCL policy
checking consists of matching event patterns in a system and determining whether

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

14 Extending choreography with contract constraints

they satisfy the policies. Note that one event can activate the checking of multiple
policies.

The modality of a policy is expressed using the deontic modalities of obliga-
tion, permission and prohibition41. These modal constraints reflect their English-
language meaning: obligations identify activities that must occur, permissions iden-
tify activities that are are allowed to occur, and prohibitions identify activities that
must not occur. The role associated with a policy identifies the participant that is
subject to the policy, or in other words who is obliged, permitted or prohibited. For
example, if payment is not made then the supplier is permitted to charge interest
on the outstanding amount. There can be dependencies between policies, for exam-
ple, the violation of one policy can activate another policy that expresses remedial
actions. The syntax of policies is illustrated in the following fragment:

Policy: FillPuchaseOrder
Role: Supplier
Modality: Obligation
Condition:

OrderFilled before (PurchaseOrder add 5 days)

This policy specifies that the supplier is obliged to have the goods ready for
shipment within 5 days of the purchase order.

Policies are defined in the context in which they apply. This context is a
Community , as will be explained in section 2.6.6. Relating these concepts to our
contract monitoring and enforcement problem, the terms of a contract can be ex-
pressed in BCL using policies: a contract consists of a set of policies that apply to
the behavior of signatories to the contract.

2.6.5. State

It is often the case that contract related events can change the state of certain
variables associated with the contract. BCL introduces the notion of a State vari-
able to define an updateable data value shared by participants in a Community
(see 2.6.6). State variables can be used, for example, to maintain running totals,
counters and other data values required to evaluate policies. The value of a state
variable can be either determined explicitly in response to an event, or on request
when the state value is needed. A contract can have many state variables that are
changing to reflect the corresponding events.

The definition of a state variable identifies a set of update actions or calculations
triggered in response to corresponding event patterns, as illustrated in the following
example:

State: OutstandingDebt
CalculationExpression

UpdateOn: Payment
UpdateSpecification:

return (this less Payment.Amount)

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 15

CalculationExpression
UpdateOn: GoodsDelivery
UpdateSpecification:

return (this add InvoicePurchaser.Amount)

This defines the outstanding debt of a purchaser, which is updated whenever
an order is delivered and whenever a payment is made. State variable changes are
bound to event patterns and are deterministic, that is, the value of a state variable
can only be modified through the matching of visible event patterns.

2.6.6. Community

BCL introduces the concept of a community based on the ODP community
concept36. A community is a context for the specification of entities that collab-
orate to achieve the specified goal. A BCL community definition includes a set of
roles, policies that apply to the roles, state variables and related event patterns that
are used as part of policy expressions. One entity can play multiple roles, although
this can be constrained by policies such as separation of duty. A community can
also be regarded as an entity that can fill a role of some higher level community.

A community is introduced with the Community keyword followed by the com-
munity name and an identifier. It is typically followed by role definitions and static
(immutable) values significant to the contract, for example:

Community:
PurchasingContract Id = ABCD

Value: StartDate
Value: EndDate
Value: CreditLimit

Role: Purchaser
Role: Supplier
Role: Freighter

Note that the concept of a community is a general concept for describing col-
laboration and can be used as a basis for defining various organizational structures
such as a company, supply chain, extended enterprise and so on. One specific kind
of community is a business contract as discussed in this paper.

It is worth noting that we apply an event-based paradigm to support both the
management and evolutionary aspects of a community, in a similar manner to the
autonomic computing paradigm2. For example, any attempt to change the structure
or composition of community can be treated as an event and such an event can in
turn be the subject of a separate policy, that is, the management policy. This allows
the possibility of changing the structure of a community in a controlled way as the
corresponding management policies allow. There are many issues, however, that
require caution when trying to dynamically change the structure of community

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

16 Extending choreography with contract constraints

and its constituent parts. Examples include possible policy conflicts that could
arise, creation of inconsistent paths in business processes and timing issues in a
distributed context (when does the new definition become active). These issues
need to be addressed as part of the underlying architecture as is done, for example,
in the Business Contract Architecture (BCA)27.

2.7. BCL for the purchasing contract

Specification of a contract in BCL uses the definition of the expected business
process as a starting point, for example, that presented in section 2.1. With the
english language contract as reference, we then identify:

• Key activities in the business process specification that are subject to contract
terms using BCL event patterns . In our example these are represented as
singleton event patterns, for example, PlaceOrder or GoodsDelivered ;

• Fixed data items(Values) necessary for the definition of contract terms, for
example, the purchaser CreditLimit ;

• Variable data items (State) necessary for the definition of contract terms, for
example, the current OutstandinDebt of the purchaser; and

• Temporal conditions defining the times at which certain contract conditions are
to be checked, for example, a delivery deadline of five days. In this example all
the points in time are expressed relative to events in the behavior.

The contract terms are specified as a set of policies, namely obligations, per-
missions and prohibitions, expressed in terms of the activities and state identified
above. It is important to note that the context of the contract specification extends
beyond a single purchasing binding instance. For example, the OutstandingDebt
state is the summation of unpaid invoice values across all purchasing binding in-
stances. Thus dynamic information about each active contract will often need to be
stored in a manner that is independent of binding execution.

The BCL contract definition for the contract terms specified in 2.2 are defined
as follows with the specific contract terms highlighted in the code through dashed
comment lines.

Community:
PurchasingContract id: ABCD

InitialisationSpecification: PuchaseContractCreationEvent

ActivationSpecification: StartDate

Value: StartDate
Value: EndDate
Value: CreditLimit

Role: Purchaser
Role: Supplier

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 17

Role: Freighter
------------------------ policy 1 -------------------------------

Policy: CreditLimitForPurchaser
Role: Purchaser
Modality: Prohibited
Condition:

PurchaseOrder ((OutstandingDebt add PurchaseOrder.value)
greaterthan CreditLimit)

State: OutstandingDebt
CalculationExpression

UpdateOn: Payment
UpdateSpecification: return (this subtract Payment.amount)

CalculationExpression
UpdateOn: InvoicePurchaser
UpdateSpecification:

return (this add InvoicePurchaser.amount)
------------------------ policy 2 -------------------------------

Policy ProvideInvoice
Role: Supplier
Modality: Permitted
Condition:

(InvoicePurchaser after Freighter.DeliverGoods)
------------------------ policy 3 -------------------------------

Policy: PromptPayment
Role: Purchaser
Modality: Obliged
Condition:

Payment before (InvoicePurchaser add 30 days)
------------------------ policy 4 -------------------------------

Policy PromptOrderFulfillment
Role: Supplier
Modality: Obliged
Condition:

OrderFilled before (ReceiveOrder add 5 days)
------------------------ policy 5 -------------------------------

Policy: PromptDelivery
Role: Freighter
Modality: Obliged
Condition:

DeliverGoods before (OrderFilled add 5 days)

3. Mapping BCL to Finesse

This section defines a mapping of BCL concepts to Finesse expressions. We begin
by discussing high-level mapping issues in 3.1 and options for enforcement and mon-
itoring in 3.2, then describe the transformation of specific concepts from BCL to
Finesse in 3.4 through 2.6.3. The mapping is illustrated by the purchasing example,
with fragments of language expressions introduced progressively and the mapping

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

18 Extending choreography with contract constraints

discussed alongside these fragments. Along with text and code fragments describ-
ing the transformations, we depict key relationships between relevant fragments of
BCL and Finesse meta-models using a simplified version of the approach proposed
by Akehurst et al1. A UML <<relation>> stereotype is used to identify trans-
formation relationships between model elements in BCL and Finesse. In terms of
generating an augmented Finesse specification, these relationships define the addi-
tional elements that will be added to the original Finesse specification to monitor
contract conditions. The section concludes by illustrating the mapping in a com-
plete definition of a Finesse purchasing binding augmented with contract controls
in 3.12.

3.1. High-level Mapping Issues

Finesse and BCL are technologies emanating from the Distributed Systems
Technology Centre (DSTC), both directly and through sponsored PhD research
programs3,27. They were influenced in the early stages by the participation of DSTC
in RM-ODP36 standardization. The influence has been continued in BCL through
DSTC involvement in ODP enterprise language37 standardization, and collabora-
tion with the University of Kent23. This common heritage provides us with an op-
portunity to explore the transformation between contract languages and choreogra-
phy languages without the effort required to resolve significant semantic differences
that might have occurred for solutions derived from entirely distinct approaches.
The key issues lie primarily in the need to map a domain-specific language (BCL)
onto the computation-oriented semantics of the Finesse language. More specifically,
we need to determine how the specification of policies as stated in BCL can be
expressed through behavioral constraints on activities in Finesse to ensure that
expected behavior in a Finesse execution of a binding satisfies those policies.

There are a number of similarities between BCL and Finesse. Both languages
are event-oriented and both languages use roles to distinguish participants and
model notions of autonomy and responsibility. Roles provide the basis for defining
geographic distribution, although this is more explicit in Finesse than in BCL. A
feature that distinguishes both languages from other languages and notations is
the explicit support for cardinality of roles, that is, the ability to have multiple
participants fulfilling the same role. Both languages also define an explicit context
for interaction behaviour, that is a Binding in Finesse and a Community in BCL.

There are also a number of differences between the languages, primarily in in-
tent and abstractions. BCL was developed with the intent of checking constraints
on business-level behavior and defines the behavior of a monitor observing events
of relevance to a contract in an out-of-band manner as depicted in figure 1. BCL
uses the abstractions of the ODP Enterprise Viewpoint36. On the other hand, Fi-
nesse was developed with the aim of specifying distributed processes spanning au-
tonomous components using abstractions similar to that of the ODP Computational
Viewpoint36. The Finesse language describes expected behavior at component in-

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 19

BCA

BCL Finesse

ProcessMonitoring
System

Enforcement
actionsEnforcement

Agent

Observations

Violation info

Specification Domain
Runtime Domain

Fig. 1. Out-of-band monitoring and enforcement

terfaces (roles) and the relationships between those behaviors (interactions). The
implication is that Finesse is more suited to defining in-band monitoring and con-
straints as discussed in more detail in section 3.2.

Another key difference is one of scope. A contract has a scope that will often span
many internal processes, for example, a supplier might have separate processes for
supply and debt collection governed by a purchasing contract. Conversely, a process
could be governed by many different contracts depending on dynamic factors, for
example, a purchaser might have distinct contracts with each supplier but use the
same process, or might be subject to internal policies and statuatory obligations that
span all activities of the enterprise. In this paper, we focus on the semantic mapping
between policies in a single contract and behavior in a single process related to that
contract but consider the implications of the many-to-many relationship between
contract and process in choosing an appropriate mapping.

It should be noted that the differences in abstraction and scope run deeper
than just the mapping between BCL and Finesse. Business-level constraints are
inevitably more abstract and must be amenable to changes reflecting the dynamic
nature of the business environment. The implication for any runtime environment
is that change is a necessary part of any process and that flexibility in the runtime
environment is essential. We do not directly address the semantics of process change
but identify key areas where change can and should be supported.

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

20 Extending choreography with contract constraints

3.2. Contract Monitoring and Enforcement

Previous approaches to contract implementation and enforcement based on
BCL27,28,29 have used an approach based on out-of-band monitoring of processes to
detect violations. Similarly, a separate component was used to implement enforce-
ment mechanisms. In other words, an external contract monitor examines a stream
of events that capture the activities in a process and identifies behavior violating the
contract terms, and these violations are reported to a separate enforcement agent
like the BCA Contract Enforcer30. This approach is depicted in figure 1.

The mapping of contract terms to choreography language expressions provides
the opportunity to enforce contract compliance in several alternative ways, notably:

(1) Prevention of non-compliant behavior, that is, the choreography engine implic-
itly monitors and controls the local processes of each participant and does not
allow execution of activities that violate the contract, as depicted in figure 2.
It terminates the binding in cases where failing to perform an activity violates
the contract. Note in these figures that the box labelled P-Finesse refers to a
new Finesse binding definition augmented with the policy constraints.

P-Finesse

BCL Finesse

Monitored Process
with Enforcement actions

Specification Domain
Runtime Domain

Fig. 2. In-band monitoring and enforcement

(2) In-band monitoring and enforcement, that is, the choreography engine immedi-
ately identifies non-compliant behavior and begins the execution of explicitly-

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 21

defined enforcement behavior for handling non-compliance. This could include,
for example, terminating the binding or automatically applying financial penal-
ties. This is conceptually equivalent to the previous approach, except that a
distinct role and additional behavior is defined for enforcement.

(3) In-band monitoring with external enforcement, that is, the choreography engine
identifies non-compliant behavior and notifies an external contract enforcement
agency to begin contract enforcement processes. This hybrid approach is de-
picted in figure 3.

P-Finesse

Monitored
Process

Enforcement
Agent

Enforcement
actionsViolation info

Specification Domain
Runtime Domain

 BCL Finesse

Fig. 3. In-band monitoring with out-of-band enforcement

Any combination of the original approach and these alternative approaches is
possible and often desirable, thus providing increased flexibility in ensuring con-
tract compliance. For example, service-level contract violations with small financial
penalties might be automatically applied using in-band enforcement mechanisms,
with other breach-of-contract issues dealt with using an external monitor and en-
forcer. There are also differing levels of enforcement as identified for BCA30, and
the in-band approach to enforcement typically corresponds to the notion of non-
discretionary enforcement, that is, enforcement rules that can and will be applied
regardless of the circumstances. Discretionary enforcement is often required to pro-
vide more flexibility in dealing with violations.

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

22 Extending choreography with contract constraints

In this paper we have chosen to implement the first approach, that is, preven-
tion of non-compliant behavior. This requires the most comprehensive mapping
from BCL to Finesse behavior and also demonstrates that it is feasible to use the
Finesse engine purely as an out-of-band monitoring engine. That is, existing process
execution mechanisms are used to implement processes and a stream of events from
processes is fed into the Finesse engine to monitor for contract violations.

3.3. Implementing enforcement in Finesse

Enforcement behavior is not currently defined either in the Finesse binding def-
inition or in the BCL contract definition. For previous implementations of BCL,
enforcement was implemented by a separate contract enforcement agent 30,27. The
decision to implement in-band controls in Finesse means that the enforcement be-
havior in the case of contract violations must be specified. Any enforcement behav-
ior is possible, including the continuation of the binding with alternate constraints.
Such behavior can be specified explicitly in the contract and mapped to Finesse us-
ing the behavior mappings specified in this section. For the purposes of the example,
we will use the following approach to enforcement:

• a violation will result in the termination of the binding; and
• checks for violation will occur before proceeding with any subsequent behavior

in the binding, or in other words, once a violation has occurred, no further
behavior will be possible.

We will use a subordinate Finesse binding defining termination semantics, specif-
ically:

Binding Termination {

Roles {

[#=1] Initiator { terminate!(reason:String) }

[#>=1] Receivers { terminate?(reason:String) }

}

Interactions {

Initiator.terminate ->

[#=all] Receivers.terminate {reason = prev.reason}

}

}

This contract enforcement behavior is quite inflexible and it is likely that a
real system would soften the behavior with specific mediation or other remedial
behaviors. In fact, it is often a business-level requirement that these behaviors should
be flexible and expression-driven to support changes in contracts and enforcement
approach during the life of a contract. The termination behavior above should thus
be considered a placeholder, allowing us to highlight the points in the binding at
which contract enforcement is necessary.

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 23

3.4. Community

A BCL Community is very similar to a Finesse Binding specification: it is a context
for the definition of roles, behavior and states of affairs of interest in the community.
While these concepts are similar, the scope of a Community is somewhat different
from a Finesse Binding as discussed in section 3.1. The implications for the mapping
of this difference can be summarized as follows:

• Community constants (Values) must be available to all binding instances as-
sociated with the community;

• Community state variables (State) must be available to and updateable by all
binding instances associated with the community.

• The set of communities whose policies apply to a binding must be determined
prior to binding instantiation;

• Where names associated with events and roles differ between the community
and binding definitions, an explicit mapping of names will be necessary; and

• There might be activities related to the community that are not realized or
visible in a binding definition.

The mapping of a community to a Finesse binding is depicted in figure 5. For
the purposes of our mapping, we apply the policies of a single community to a single
binding with Values and State appropriately abstracted from the binding.

BCLRole

name : String

Cardinality : int

FinRole

name : String

Cardinality : int

<<relation>>

BCLRoleRelFinRole

Policy

Binding
<<relation>>

CommunityRelBinding

Community

<<relation>>

PolicyRelInteraction

Interaction

ConstrainedRole

added behaviour

policy spec

1..*

added behaviour

Fig. 4. Transforming community and roles

It is worth noting that the monitoring approach embodied in BCA30 has a dis-
tinct notion of activating a community, which indicates the monitoring of the poli-
cies defined for a community should begin. Since we have chosen in-band monitoring

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

24 Extending choreography with contract constraints

for this initial mapping, we will assume that the community has been activated prior
to binding instantiation and that monitoring is always required. More flexible ap-
proaches can be implemented if required, for example, providing an interface and
appropriate guard conditions to enable monitoring on-the-fly.

3.5. Role

A BCL Role is used to identify behavior associated with a party to a contract.
BCL roles are names, with the expected behavior of parties filling roles defined in
subsequent Policy and thus the embedded EventPattern definitions associated
with a specific Role name. The corresponding Role term in Finesse is similar: it
defines the expected behavior of participants in a Binding. The key differences are
firstly that Finesse Role definitions must contain a complete definition of the visible
behavior associated with the role whereas BCL identifies only those behaviors that
are significant to the contract. Secondly the Finesse role behavior is always local to
the participant.

The approach to mapping BCL roles to Finesse roles is to treat each of the
BCL policy statements as constraining or adding behavior to the Finesse roles.
The augmented Finesse role definition becomes the logical AND of the behaviors
corresponding to BCL policies and the existing Finesse binding definition. This
ensures that the Finesse specification of expected behavior will also satisfy policies
stated in the contract. So, the binding execution can enforce the rules stated in
the policies of the contract. There will be cases, however, where the constraints
expressed in a policy apply to interactions between participants. These must be
mapped to constraints defined in the Interactions section of the Finesse program
and joined with the existing interaction behavior as before using a logical AND.
Examples of this mapping are illustrated subsequently in section 3.10 and the UML
definition of this mapping is depicted in figure 4.

Note that both BCL and Finesse roles have cardinality, that is, more than one
party in a contract or participant in a binding can fulfill a role and some roles are
optional. The cardinality semantics are equivalent so must be compatible, specifi-
cally, the Finesse role cardinality specifications must not permit role cardinalities
that are not permitted by the BCL specification. The approach to mapping behav-
ior above applies in the same manner to roles with non-singular cardinality, that is,
all parties fulfilling a role are subject to the policies associated with that role.

3.6. Subcommunity

BCL also supports the notion of subcommunities, where subcommunities can fill
roles in higher-level communities. This provides modularity, visibility controls and
separation of concerns in the language. There are two ways to implement subcom-
munities in Finesse:

(1) Through definition of a proxy that acts as a gateway between the distinct

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 25

bindings that correspond to subcommunity and the top-level community.
(2) Through flattening the community and subcommunity into a single Finesse

specification, meaning roles of the subcommunity become explicit roles in the
Finesse binding.

The first is most appropriate for subcommunities used to give visibility controls,
for example, to define the internal enterprise behavior that implements a role in a
cross-enterprise community. It is important to note that the use of a proxy resolves
the issues associated with locality, remembering that events associated with a Fi-
nesse role must be co-located. The second is perhaps more efficient, but is typically
inappropriate because it undermines the reason for introducing a subcommunity in
the first place: we do not consider it further. Note that the Finesse Import function-
ality is a programming abstraction to support code re-use and it does not provide
the semantics necessary to implement subcommunities.

The first mapping is depicted in figure 5. The behavior of a subcommunity
fulfilling a role in a higher level community is encapsulated by a gateway object
and a proxy role definition that identifies the behavior of the subcommunity that is
exported to the higher-level community. Note that the gateway object depicted in
figure model 5 cannot be directly modelled in the Finesse language syntax because
the concept of participant or object is not present in the language. The use of
two FinRole classes in this figure is a reflection of the Akehurst notation: this
representation is used to explicitly distinguish the two Finesse role instances.

BCLRole

<<relation>>

CommunityRelGateway

<<relation>>

BCLRoleRelFinRole

<<object>>

gateway

FinRole

Community

RoleFillingElement
<<relation>>

CommunityRelProxyFinRole

FinRole

instance of

fills role

instance of

fills role

Fig. 5. Transforming subcommunities using a gateway

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

26 Extending choreography with contract constraints

3.7. State

The BCL State construct defines data values of relevance to the contract and re-
quired to evaluate policy. This state is shared by the participants in the Community
and defines a set of state update actions, triggered in response to corresponding
event patterns, as illustrated in the BCL contract example of section 2.7. In the
context of a BCL community specification, this state is global.

Finesse has no explicit state construct. State is implied by reference to causally
preceding events in parameter relationships, or in other words, a partial view of
the event history for a binding. This avoids any need for explicit synchronization
between distributed engines but also forces a programmer or compiler to explicitly
define the semantics of shared state if required. The value of any BCL shared state
can thus be maintained in Finesse in three ways:

(1) By always retrieving and updating the state through an explicit role in the
binding program.

(2) By defining the current value of the state in a parameter relationship as a
function of the set of causally preceding state update events.

(3) Through explicitly defined state synchronization behavior, for example, use of
an optimistic voting mechanism to maintain shared state across participants.

We will take the approach of defining an extra Finesse role responsible for per-
sistent storage of each BCL state variable, reflecting option 1 above. This extra role
is a separate role to avoid static specification of the participant “owning” the state.
When we consider that the scope of state variables for a contract will often extend
beyond a single binding, the idea of using a separate role for maintenance of state
becomes even more compelling since the component implementing the role must
be shared across bindinges. One can think of this role as a shared contract state
repository. This transformation of BCL state is depicted in UML in figure 6. The
behavior of a Finesse role for maintaining a specific state variable is captured by
the FinRoleBehavior class in this figure.

In our example, the FinRoleBehavior for the outstanding debt is captured in
the following code fragment. We assume the existence of a remote procedure call
(RPC) binding fragment3.

Import RPC;

Roles {

...

OutstandingDebt {

loop {

debit{RPC.Server((x:Real)())} OR

credit{RPC.Server((x:Real)())} OR

balance{RPC.Server(()(y:Real))}

}

}

}

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 27

FinRole<<relation>>

StateRelFinRoleInstance

State

StateValue : Object

EventPattern

UpdateSpecification

FinRoleBehaviour
<<relation>>

StateRelFinRoleBehaviour

instance of

trigger

calculation method

+

Fig. 6. Transforming state

Interactions {

...

Freighter.goodsDelivered

-> OutstandingDebt.debit.receive

{x=prev.amount}

AND Purchaser.payment

-> OutstandingDebt.credit.receive

{x=prev.amount}

}

In this fragment, a new OutstandingDebt role has three RPC operations for
debit, credit and balance. The debit behavior is fired after a goodsDelivered

event. Note that Finesse does not require that an RPC server response event is at-
tached to a corresponding client receive: it will be silently discarded if not required.
Similarly, the credit behavior is fired after the purchaser executes the payment

event. The balance behavior will be used by any policy requiring the current bal-
ance. The loop construct is necessary to allow these operations to be used multiple
times, remembering that iteration must be explicit in Finesse roles. It should be
noted that the -> operator in Finesse implies that the causal relationship must be
satisfied and hence implies reliable messaging unless alternative failure behavior is
explicitly specified. If other state is required in a BCL contract, it can be added in
a similar manner.

3.8. Values

BCL has a Value concept that defines fixed data values initialized at contract
activation time. This concept is missing from Finesse and for the purposes of the
mapping, we will use the same approach as defined for BCL State , that is, define
an interface for any values. This interface will not use RPC since the values are
static and can be published just once, allowing any subsequent event to use the
identified values.

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

28 Extending choreography with contract constraints

The semantic model of Finesse is such that an explicit static value concept could
be added with relative ease and would certainly be useful. In a mapping between
BCl and Finesse, the values of such data items would be initialized at binding
instantiation from the context of all relevant communities. Such a concept will be
considered in future work on Finesse.

3.9. Policies

A Policy is used to specify business-level constraints in a BCL Community . These
constraints are mapped to an existing Finesse binding definition by adding guards
reflecting the policy constraints to existing behavior, and adding enforcement be-
havior as the alternate path if a guard indicates a violation. As discussed previously,
the enforcement behavior in our mapping example will be to terminate the binding
to reflect the decision to implement in-band enforcement. We will assume that all
events identified in BCL event patterns are matched by equivalent events in Finesse:
this is reasonable in our example when we consider that both the BCL and Finesse
are derived from the same process definition.

The relationship between BCL policy and Finesse behavior is depicted in figure
7. This figure also depicts the relationship between BCL event patterns and Finesse
event relationships which will be discussed further in sections 3.10 and 3.11. The
basis of the mapping is that the event pattern associated with a policy can be
transformed into an equivalent Finesse event relationship specification, with the
policy condition transformed into a guard. The UML does not distinguish between
role and interaction behaviour, with this distinction captured previously in figure
4.

EventPattern

<<relation>>

EventPatternRelEventRelationship

EventRelationship

EventTemplate
<<relation>>

EventPatternRelEventTemplate

Policy

modality : String

Guard

<<relation>>

EventPatternRelGuard

0..*

2..*

0..*

1..*

Fig. 7. Transforming policies

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 29

A key issue in the mapping of BCL policies to Finesse behavior is that the policy
condition can reference attributes of an event being governed by the policy. This
means that policy checking occurs after the event has occurred. Consider the credit
limit constraint in the BCL purchasing contract of section 2.7: it is not possible to
determine the purchase order value until after the purchase order has been placed,
so the constraint can only be enforced after the event becomes visible. Thus in
order to implement the required enforcement behavior, the guards reflecting policy
conditions involving event attributes must be applied to all behavior that can follow
an event being governed rather than the governed event itself.

There are three modes of policy expression: obligation, permission and prohibi-
tion. The mapping to constraints on the Finesse binding for each of these is discussed
in the following subsections.

3.9.1. Obligation

A BCL Policy can have an Obligation modality, indicating that the governed
behavior defined in the policy must occur. In order to conclusively identify a vio-
lation of the policy, there must be observable behavior indicating non-fulfillment.
This can be achieved through one of the following:

(1) Time limits on the obligation, for example the obligation to perform X must be
satisfied by time T as done in policy 5 of section 2.7.

(2) Attributes of events in the behavior that identify a violation, for example
X.value > $100.

(3) The choice of an alternate and mutually exclusive path in the binding, for
example, Z has occurred, indicating that X can no longer occur.

The approach to defining obligations in the Finesse binding depends on which
approach is used to identify non-fulfillment. In case 1 above, the behavior X is
guarded with an expression only allowing it to occur before time T with the alter-
native behavior signifying a violation, which can only occur at or after time T. This
is illustrated in the code fragment below. In case 2 above, all events that can imme-
diately follow X are guarded with an expression to check that the event properties
satisfy the obligation, with the alternative behavior being termination. In case 3
above, the occurrence of Z can only be followed by termination.

We note that identifying a violation for case 3 above is particularly difficult in
the general case because Z can be an arbitrarily complex piece of behavior and
can also take an arbitrary period of time. We believe that this is not a useful way
to determine fulfillment of obligations and suggest that any obligation without a
deterministic time or event attribute constraint is potentially unenforcible.

There are several examples of obligations with time limits in the BCL purchasing
contract, with the obligation of the supplier to have goods ready within five days
illustrated in the following Finesse fragment:

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

30 Extending choreography with contract constraints

Roles {

...

Supplier {

receiveOrder ->

[timeless(prev, 5*3600*24)]

orderFilled XOR

[not timeless(prev, 5*3600*24)]

Supplier.Termination.initiate }

AND ...

}

}

Note in the above example that the timeless(...) function is a built-in guard
function that evaluates to true when the time since the identified event (in this case,
the keyword prev indicating the preceding event in the specification) is less than
a specified number of seconds. Similar generation of Finesse constraints to reflect
obligations can be defined for the other obligations of the contract. The complete,
policy-augmented Finesse specification is defined in section 3.12.

In this mapping we have used the knowledge that both receiveOrder and
orderFilled events are defined in the Supplier role. Because both events are
locally visible, the obligation can be locally monitored. If this is not the case, then
we have to decide where to evaluate and monitor the obligation. The issue of where
to monitor policies is an instance of the general problem of making consistent obser-
vations in distributed systems16,32. This issue is further discussed in section 4.2.1.
In our example we have taken the simplest approach which is to assume that the
choreography engine at the source of the violating behavior can be trusted to report
the violation.

3.9.2. Permission

A BCL Policy can have a Permission modality, indicating that the behavior
defined in the policy is allowed to occur. From a semantic perspective, this is equiv-
alent to a logical OR of the permitted behavior with the existing Finesse binding
behavior. If we assert that the binding defines all possible behavior then permis-
sions in BCL do not add behavior in the general case and the mapping need only
ensure compatibility between BCL and Finesse specifications, that is, check that
the permitted behavior is reflected in the binding.

In our sample contract we have one permission: “the supplier is permitted to
provide an invoice immediately after goods delivery”. The binding defined in 2.5
implies this behavior, since it requires an invoice after goods delivery, thus the policy
is implicitly satisfied.

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 31

3.9.3. Prohibition

A BCL Policy can have a Prohibition modality, indicating that the behavior
defined in the policy must not occur. There are two cases that must be dealt with
in mapping BCL prohibitions to Finesse behavioral constraints:

(1) The BCL prohibition condition can apply to attributes of the governed events,
for example, a purchase order shall not be processed if the value of that order
plus the current outstanding debt is greater than an agreed maximum.

(2) The BCL prohibition condition can apply to event-level behavior, for example,
if the supplier receives a credit rating below level A for the purchaser, no further
orders are possible.

In the first case above we need to guard all behavior that follows the event to
ensure that the prohibition is respected. In the purchasing process, for example,
we need to access the state variable capturing the outstanding debt before evaluat-
ing the condition on all events potentially following the purchase order. A sample
Finesse fragment for the condition above relating to our sample binding is thus:

Interactions {

...

Purchaser.purchaseOrder ->

RPC(Supplier.balance, OutstandingDebt.balance) ->

{[valueOf(Purchaser.purchaseOrder.o) + Supplier.balance.receive.x >

Values.creditLimit.limit]

Supplier.creditExceeded.terminate{reason="over credit limit"}

XOR

[valueOf(Purchaser.purchaseOrder.o) + Supplier.balance.receive.x <=

Values.creditLimit.limit]

Supplier.receiveOrder{o = Purchaser.purchaseOrder.o}}

...

In the second case identified above, we can ensure that the prohibition is re-
spected either by ensuring that the prohibited behavior is not permitted by the
binding, or by guarding the prohibited behavior to reflect the prohibition. For the
example prohibition defined above, we would need to add the following to the Fi-
nesse binding:

Roles {

...

Supplier {

...

receiveRating(r:CreditRating) ->

{ -- allow order if credit rating >= A

[receiveRating.r >= A] receiveOrder()

XOR

-- terminate if credit rating < A

[receiverating.r < A] ratingTooLow{Termination.Initiator}

}

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

32 Extending choreography with contract constraints

XOR

-- allow order if credit rating has not been received

[not occur(receiveRating)] receiveOrder()

}

}

The logical AND of this behavior with the existing binding behavior effectively
applies the necessary constraint, noting that in this code fragment we have intro-
duced another possible termination.

3.10. Event Patterns

BCL event patterns are conceptually equivalent to Finesse event relationships, al-
lowing the specification of required causal, parameter and timing relationships be-
tween events. Assuming BCL event abstractions are refined to a level compatible
with Finesse event templates, the mapping between event patterns and event re-
lationships becomes a relatively straightforward matter. The primary activity is in
identifying and matching the syntactic elements defining such relationships in each
language. We demonstrate the mapping for the constructs in our example binding
through code fragments and the complete augmented binding definition of section
3.12.

There are some issues that introduce complexity and require further discussion:

• Finesse distinguishes between role and interaction behavior because locality
is important in defining the execution of a binding. BCL does not make this
distinction. To resolve this issue, any relationship between event templates from
distinct roles is placed in the interactions section of a binding program, while
relationships for event templates in the same role are placed in the roles section.
The outcome is that the augmented Finesse binding can split an event pattern
across several parts of the program, thus losing the structuring in the original
BCL definition. This is unavoidable; and

• The semantics of BCL event patterns is such that these patterns match any
occurrence of the behavior embodied in the pattern. In other words, iterative
behavior can be implicit in the event pattern. In contrast, Finesse requires
explicit iteration in roles with implied iteration in interactions. The consequence
is that BCL event patterns must be applied to all instances of iterative behavior
in a Finesse program. This is generally not a problem, but must be considered
when performing the mapping;

In the general case, there are also some key differences in the abstraction of
events used in BCL and Finesse. Events in BCL can have a duration and can also
be abstractions over a set of events in a lower-level context (event roles), meaning
that events are potentially non-atomic and can have more than one location. In
contrast, Finesse events are instantaneous, atomic and have a single location. If
event abstraction mechanisms are used in policy definitions, then the abstract BCL

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 33

events must be refined to a level where they can be mapped to a set of Finesse event
templates.

In our purchasing example, the BCL event patterns are defined in terms of the
event templates in an existing Finesse binding so we do not have any abstraction
in the BCL. If we assume in the general case that BCL contracts are specified
after the binding definition has been developed and in terms of the existing Finesse
events, then we do not need to refine any event abstractions. Note that some BCL
constraints are specified separately from the binding definition, for example internal
policies or statuatory obligations. Such policies might need to be refined before
transformation.

3.11. Event creation rule

BCL event creation rules are a special case of event abstraction that can be dealt
with directly. Such rules define a synthesized event in terms of an event pattern
over lower level events. It is not necessary to directly represent the synthesized
event in Finesse but in some cases the explicit inclusion of a distinct event tem-
plate for the synthesized event can improve readability. Consider the BCL for a
PurchaseSupplies event creation rule that matches the complete purchaser be-
havior in our purchasing binding:

ECR PurchaseSupplies
GenerateOn

PlaceOrder->GoodsDelivered->
InvoiceRecived->Payment

This event can be modelled by adding a purchaseSupplies event after the
purchasing behavior as illustrated in the following code fragment:

Roles {

...

Purchaser {

... -> payment

-> purchaseSupplies

}

}

Subsequent behavior can then refer to this event template rather than the more
complex behavior that preceded it. This is consistent with the current approach
to event creation rules implemented in BCA, which creates a new event once the
nominated event pattern is matched.

3.12. Augmented Binding Definition

The following code is the complete result of applying the BCL to Finesse mapping
to our purchasing example, expressed as a single Finesse binding program. There
are a few details to highlight in the constraints added to the binding definition:

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

34 Extending choreography with contract constraints

• The termination behavior defined in section 3.3 has been added to each role to
capture the points at which violations can be detected. As previously noted,
termination behavior has both an initiator and a set of receivers;

• The responsibility for initiating termination behavior has been given to the role
that would be most interested in detecting the violation. The issues associated
with the monitoring location identified in section 3.9.1 are very relevant here,
since notifications of the events constituting a violation must be transmitted to
that location before detection is possible;

• Finesse naming is used to distinguish each instance of termination behavior
associated with violations. The name indicates the type of violation, but could
equally have been the name of the policy that gave rise to the violation;

• As discussed in 3.7 and 3.8, roles are used to capture contract state and start-up
values. Notice that RPC is used for state whereas implicit messaging is used for
values. In effect, the Values role publishes all values making them accessible to
any subsequent events in the binding; and

• Keep in mind that the Interactions section identifies causal and parame-
ter dependencies between events occuring at distinct roles. Messaging is thus
declarative, not imperative.

Comments in the program describe the enforcement and monitoring behavior
added to the binding. Comments are introduced by lines beginning with “--”. The
Finesse program augmented with BCL policy constraints is thus:

Binding PurchasingProcess {

Import RPC;

Import Termination;

Roles {

Purchaser {

purchaseOrder!(o:EdifactPO) ->

{-- termination can occur after placing the order if the credit

-- limit is exceeded

creditExceeded{Termination.Receivers}

XOR

{-- Purchaser can initiate termination if goods are not ready

-- in time or goods are not delivered in time

goodsNotReady{Termination.Initiator}

XOR goodsNotDelivered{Termination.Initiator}

XOR goodsDelivered?()

-> invoiceReceived()

-> {payment(amount:Real)

-- Termination can occur if payment is too late

XOR latePayment{Termination.Receivers}}

}

}

Freighter {

-- termination can occur before goods are ready, e.g. credit

-- limit exceeded or supplier does not have goods ready in 5 days

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 35

creditExceeded{Termination.Receivers}

XOR goodsReady?() ->

{-- Termination can occur if the freighter does not deliver the

-- goods within 5 days of the goods being ready.

goodsNotReady{Termination.Receivers}

XOR goodsPickup!() ->

{goodsNotDelivered{Termination.Receivers} XOR deliverGoods!()}

}

}

Supplier {

-- Supplier can terminate before order received if credit limit

-- exceeded. Current credit balance must first be retrieved.

balance(RPC.Client()) ->

{creditExceeded{Termination.Initiator}

XOR receiveOrder?(o:EdifactPO) ->

-- Purchaser can terminate if order is not filled in time

{goodsNotReady{Termination.Receivers}

XOR

{fillOrder!() ->

orderFilled!(value:Real) ->

-- Purchaser can terminate if order not delivered in time

{goodsNotDelivered{Termination.Receivers}

XOR deliveryConfirmed?() ->

-- Supplier can optionally terminate after invoicing

-- if payment is late. See interactions for details.

{invoicePurchaser!(i:EdifactInvoice) ->

{paymentReceived!(i:EdifactInvoice)}

XOR

latePayment{Termination.Initiator}

}

}

}

}

}

}

OutstandingDebt {

loop {

debit{RPC.Server((x:Real)())} OR

credit{RPC.Server((x:Real)())} OR

balance{RPC.Server(()(y:Real))}

}

-- loop semantics allow us to fall through to termination

-- after zero or more iterations. Role does not need explicit

-- termination behavior because it is entirely reactive.

}

Values {

creditLimit!(limit:Real) AND

startDate!(start:Date) AND

endDate!(end:Date)

}

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

36 Extending choreography with contract constraints

}

Interactions {

-- Delivery of goods increases outstanding debt

Freighter.goodsDelivered ->

OutstandingDebt.debit.receive {x=valueOf(Purchaser.purchaseOrder.o)}

-- Payment by purchaser decreases outstanding debt

AND Purchaser.payment -> OutstandingDebt.credit.receive {x=prev.amount}}

-- Sending an order that blows the credit limit results in termination

-- initiated by the Supplier. We first need to make sure that the credit

-- limit and the current balance are accessible for the guard.

AND Values.creditLimit ->

Purchaser.purchaseOrder -> RPC(Supplier.balance, OutstandingDebt.balance)

{[valueOf(Purchaser.purchaseOrder.o + Supplier.balance.receive.x >

Values.creditLimit.limit]

Supplier.creditExceeded.terminate{reason="over credit limit"}

XOR

[valueOf(Purchaser.purchaseOrder.o) + Supplier.balance.receive.x <=

Values.creditLimit.limit]

Supplier.receiveOrder{o = Purchaser.purchaseOrder.o}}

AND Supplier.orderFilled

-> Freighter.goodsReady{}

AND Freighter.deliverGoods -> Purchaser.goodsDelivered

-- Permission to invoice the purchaser is implied by the following

-- and statement corresponding dependency between deliveryConfirmed and

-- invoicePurchaser in the Supplier role.

AND Freighter.deliverGoods

-> Supplier.deliveryConfirmed{}

AND Supplier.invoicePurchaser -> Purchaser.invoiceReceived

-- Order must be filled within 5 days or the Purchaser will initiate

-- termination

AND Supplier.receiveOrder ->

{[timeless(prev,5*3600*24)] Supplier.orderFilled

XOR [not timeless(prev,5*3600*24)]

Purchaser.goodsNotReady.terminate{reason="goods not ready"}}

-- Order must be delivered within 5 days of notifying Freighter that

-- goods are ready or the Purchaser will initiate termination

AND Freighter.goodsReady ->

{[timeless(prev,5*3600*24)] Freighter.goodsDelivered

XOR [not timeless(prev,5*3600*24)]

Purchaser.goodsNotDelivered.terminate{reason="goods not delivered"}}

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 37

-- Payment must be made within 30 days of the invoice or supplier will

-- initiate terminate termination

AND Supplier.invoicePurchaser ->

{[timeless(prev,30*3600*24)] Purchaser.payment

XOR [not timeless(prev,30*3600*24)]

Supplier.latePayment.terminate{reason="late payment"}

AND Purchaser.payment -> Supplier.paymentReceived

-- We need to bind termination initiation behavior with the termination

-- behavior of other parties to that termination

AND Termination(Supplier.creditExceeded,

(Purchaser.creditExceeded,Freighter.creditExceeded))

AND Termination(Purchaser.goodsNotReady,

(Supplier.goodsNotReady,Freighter.goodsNotReady))

AND Termination(Purchaser.goodsNotDelivered,

(Supplier.goodsNotDelivered,Freighter.goodsNotDelivered))

AND Termination(Supplier.latePayment,Purchaser.latePayment)

}

}

4. Discussion

This section discusses a number of technical and business issues related the trans-
formation of business contracts to choreography expressions.

4.1. Business issues in monitoring and enforcement

In section 3 we have discussed transformation from the BCL into Finesse choreogra-
phy for one specific approach to monitoring and enforcement, namely the prevention
of non-compliant behaviour. This could be applied, for example, to mission critical
systems where the risk of contract violations and associated costs are high. A higher
level of risk requires more complete and perhaps more timely monitoring which can
be achieved through in-band approaches as discussed in section 3.2. This approach
to deployment of monitoring and enforcement, however, increases the cost.

In general, the transformation of contract terms to process constraints must
consider business-level issues in choosing the monitoring and enforcement approach.
The choice will be dictated by various economic, business and technology factors
that affect risks associated with contract violations.

The first factor is the influence of trust in others, that is, the level of confidence
that another party will perform as expected. This level of confidence will be based on
on the experience of a party, typically arising from previous business interactions
with the party or based on reputation. Note that in all cases, one needs also to
consider the influence of uncertainty associated with the environment of the parties.
The level of trust in other parties and related uncertainty directly affects the level
of risk in a contract.

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

38 Extending choreography with contract constraints

Issues of trust also arise in the choice of infrastructure technologies to support
interactions between parties and the monitoring and control of those interactions.
Monitoring in particular must rely on correct reporting of behaviour and requires
trust that the infrastructure can resist tampering. For traditional middleware proto-
cols, a protocol-level interceptor might be used to report behaviour to a third-party
monitor, as is done in BCA. It is clear that a trusted third-party monitor can be
chosen, but there must also be trust in the interceptor, which is typically located
at the premises of a party and hence must be quite resistant to tampering.

In addition, reporting behaviour to the third-party monitor requires a reliable
messaging infrastructure to ensure that behaviour is reported to the third-party
monitor in a reliably and timely fashion. An infrastructure based on the Finesse
engine is capable of monitoring behaviour and enforcing contract constraints with-
out a third-party monitor, thus reducing the number of trusted components. This
monitoring and enforcement behaviour occurs at the location of participants so we
must again place trust in the ability of the Finesse engine to resist tampering.

A further business issue is the complexity of each business transaction: a more
complex transaction is more likely to have violations and hence increased risk. This
is most probably the result of bounded rationality problems, that is, that parties
do not fully understand the transaction and make mistakes, rather than intentional
failures caused by (mis)performance of the others.

Violation cost is a significant factor in the choice of monitoring and enforcement
approaches. A transaction might have a high cost associated with violations, thus
increasing the need for monitoring and enforcement, even where there is a high
level of trust and low complexity. For example, in the finance, defence and health
domains, there is a stronger case to implement strict enforcement mechanisms like
the preventative enforcement approach presented in this paper. In other situations
where violation costs are lower, it might be sufficient to rely on monitoring either
carried out by parties themselves or by a trusted third party, and use policies or
existing legal remedies to deal with violations. This “soft” enforcement approach can
leave the decision of whether to enforce violation policies to the parties themselves.
Finally, in cases where there are minimal costs associated with violations, it might
be sufficient to rely on the monitoring of some critical variables only, rather than
on a full set of monitoring conditions.

These factors of risk, cost, trust and complexity that need to be considered when
selecting deployment options for monitoring and enforcement.

4.2. Technical issues

The mapping presented in the section 3 provides an indication of the work required
to compile business contract specifications into choreography primitives for control,
monitoring and notification. It highlights a number of key issues in the contract and
choreography semantic models, specifically:

(1) Time and locality are critically important in the accurate specification of poli-

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 39

cies and monitoring requirements.
(2) The choreography environment must support the generation of events to signal

potential contract violations if external enforcement or monitoring is required.
(3) The multi-party nature of event patterns makes it necessary to collect notifica-

tions of events from many sources to effectively monitor and enforce policies.
This often implies delivery of event notifications to more than one destination,
or in other words, multicast. The Finesse model handles this elegantly, but the
need for multicast could add significant complexity for choreography models
based on explicit point-to-point messaging.

(4) The concept of non-static shared state in a business contract must be translated
into a set of interactions used to retrieve and optionally update that state. If
the concurrency and durability properties of the state are important to the con-
tract, then these properties must be explicitly specified so that an appropriate
transaction model can be applied. In general, shared state is difficult to manage
in a truly distributed environment and alternative mechanisms are preferable.

(5) The ability to add constraints to an existing process definition using logical op-
erators is significant to the transformation. Declarative approaches are typically
more amenable to this flexible conjunction of process and monitoring behaviors.

Alternate contract and choreography languages need to address these issues to be
useful in mapping contract terms to process constraints. The following subsections
discuss a number of these semantic issues in more detail.

4.2.1. Time and locality

There are many possible ambiguities in a contract resulting from policies that do
not identify time and location reference points. Consider the the statement “the
supplier is obliged to have goods ready for shipment within 5 days”. There are
several ambiguities arising from this simple English statement:

• When does the 5-day period begin? In our example, we have specified that
the period begins when the supplier receives the order. Without this explicit
specification, there is considerable potential for ambiguity and dispute;

• If the policy is monitored by the purchaser or a third-party monitor, then the
monitor must have confirmation that the order was received with an accurate
and trusted timestamp indicating the time of receipt. What if the confirmation
is lost or is timed out? How is a trusted timestamp generated?

• If the policy is monitored by the supplier, then the supplier has a conflict
of interest because reporting a violation potentially leads to a penalty. Can we
trust the choreography engine to correctly report the violation from the supplier
location?

Notice that in all three items above, the location of actions is critical to the
contract. If the contract specifies that the time period is measured from the time

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

40 Extending choreography with contract constraints

the order is sent by the purchaser, the supplier carries the risk that the order might
be lost in communication. If monitoring were to be carried out at the supplier, then
we remove the problem of lost orders but add the need for increased trust in the
supplier to admit violations (which we have assumed in our mapping). If we use
transactional messaging, the problem of lost orders is removed, but at what point
does the transactional messaging system stop attempting to send a failing message
and notify the sender of failure? In the general case it is impossible to guarantee
delivery of messages in a fixed time frame so this exception must be explicitly
handled. The implication is that remote monitoring of obligations can only identify
possible violations, with further evidence required from the source of monitored
events to accurately establish the violation of an obligation in the event of message
failure. More complex obligations can involve behavior at multiple locations so using
a generic rule to detect violations at the source cannot be universally applied.

We highlight these issues by noting that there is, in fact, a problem in the aug-
mented specification of section 3.12. Consider the enforcement behavior associated
with late payments. The condition requires that either the purchaser pays within 5
days of the invoice or the supplier will initiate the late payment enforcement action.
Because the purchaser and supplier are not co-located, it is possible the the pur-
chaser will pay before the deadline is reached but notification of that payment will
not reach the supplier before the deadline and the supplier initiates the enforcement
action. Due to the use of true concurrency and explicit locality in the operational se-
mantics of Finesse, it is possible to detect this problem through automated analysis
of the program.

We can resolve many issues in the general case by defining a monitoring Role in
Finesse for each BCL Obligation . Roles in Finesse are bound to a location during
binding establishment, so the monitoring location can be identified by the parties
involved for each run-time instance and could potentially use a third-party monitor.
Since Finesse roles can be filled by multiple participants, it is conceivable that more
than one participant actively monitors the obligation. Note also that we must rely
on accurate measurement and recording of time with events at all locations.

4.2.2. Implementing global state

BCL includes the concept of state shared by the participants of a community. While
such global state is relatively easy to maintain consistently in an environment with
centralized control, maintaining this state in a distributed context like that of our
purchasing example is considerably more difficult. Global state requires synchroniza-
tion semantics and thus can introduce the possibility of unbounded blocking due
to deadlocks and network failures. Synchronization becomes even more problematic
in a system involving participants connected by the Internet because protocols like
two-phase commit do not scale to widely distributed networks and suffer from star-
vation in unreliable networks, that is, updates can often be unsuccessful because of
failures or conflicts. Consider the choices first identified in section 3.7:

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 41

(1) Maintain state in an explicit role.
This option is reliable but it is not always desirable, for example, if a re-

mote location wants to evaluate a policy referencing the state value it must
always access the state across the network. Network failure means the state is
unavailable.

(2) Evaluate functional expressions over events in a parameter relationship.
For example, if role A is responsible for the state and has seen two update

events X and Y, then the current state is defined by f((X,Y)) at role A. This is
similar to option 1 except that we rely on the non-persistent storage of event
history in the Finesse engine. This suffers from so-called dirty reads because
the local state might not include a recent update made by another participant
at the time of evaluation.

(3) Through explicitly defined state synchronization behavior.
This option suffers from the possibility of poor performance due to synchro-

nization overheads or unbounded blocking in the event of network failures.

While one of the above solutions might be ideal for some circumstances, all
generic solutions are susceptible to dirty reads, failures or starvation when consistent
state is required in more than one location. Given this discussion, any Community
definition that requires consistent state shared across participants must be handled
with some care. A scalable and robust solution is to explicitly permit the use of
local and potentially inconsistent state (option 2 above), but this cannot always be
accomodated by the parties to a contract.

4.3. Complexity and usability

The augmented binding definition is considerably more complex and verbose than
the original binding definition. Given that this is a simplistic process and contract
definition, the complexity is cause for concern if the augmented binding definition
must be human readable. In part the extra complexity occurs because considerable
additional behavior has been added to the definition. The fact that the Finesse
behavioral model is capable of accurately capturing the contract constraints is sig-
nificant because it validates the belief that contract constraints can be translated
into process constraints. The basic process steps are unchanged, however, and it
would be worthwhile to consider syntactic changes in the Finesse language allowing
exception behavior to be separated and abstracted from the basic binding definition.

5. Related Work

The following subsections discuss alternate research, standards and commercial
technologies for the definition and implementation of contracts and business pro-
cesses. The goal is to define the relationship of BCL and Finesse with other tech-
nologies and indicate how the technique described in this paper might be relevant
to these technologies.

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

42 Extending choreography with contract constraints

5.1. Alternate Contract Definition Technologies

As far as the authors are aware, BCL is currently the most comprehensive contract
language developed to express contract semantics for cross-organizational enterprise
models. It has a number of distinguishing features, including:

• It supports the expression of deontic policy constraints in contracts using pow-
erful and versatile event-based behavior specification, while at the same time
positions policies as part of its context, namely the community;

• It has the ability to express relationships between communities and delegation of
policies within a community allowing hierarchical and peer-to-peer relationships
between policies;

• It was designed with extensibility in mind and can allow expression of many
types of monitoring condition, whether they come from an internal business
process or as part of cross-organizational collaborative interactions;

• It uses model-based paradigms and is suitable for use as part of a corresponding
tool chain for the full contract management life-cycle13; and

• It is compliant with ODP standards for enterprise language37.

In certain aspects the Contract Expression Language (CEL)7,42, recently pro-
posed and currently under development within the Content Reference Forum9, is
similar to BCL. Like BCL, CEL is inspired by deontic logic style of policy expres-
sions in contracts but is motivated by the need to represents contracts used in
content distribution. In fact it is based on the ISO/IEC MPEG standard Rights
Expression Language31,9. It is an XML-based language designed to capture and
communicate contractual information, and facilitate contract execution and en-
forcement by machines with respect to granted permissions, mandated obligations
and stipulated prohibitions. Unlike BCL, the current version of CEL does not define
an organizational and business process framework so that contract conditions can
be represented as governance of cross-organizational interactions. It also does not
have a clearly defined behavioral model like BCL event patterns for the expression
of deontic constraints.

Farrell et al15 are working on a contract language that also has its basis in deontic
formalism. It makes use of an event calculus20 to track normative state of contract
in response to contract events. The normative state of the contract at a specific time
is the aggregation of instances of normative relations (e.g. obligations, permissions
and power) plus the current values of contract variables. This language is similar to
BCL in its use of event relationships to describe behavioral constraints associated
with policies. Unlike BCL, the focus of the language is on tracking and visualizing
contract state: it does not consider the overall enterprise model in which contracts
typically serve as a governance mechanism for cross-organizational transactions.

There are some similarities between BCL and the Ponder language10 with re-
spect to the specification of policies. Ponder provides a common means of specifying
security policies that map onto various access control implementation mechanisms

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 43

for firewalls, operating systems, databases and Java applications. It includes autho-
rization, filter, refrain and delegation policies for specifying access control, as well
as obligation policies to identify and control management actions. In comparison
to BCL, Ponder provides a subset of the BCL compositional operators for specify-
ing behavior, reflecting the system management needs for which it was primarily
developed.

In terms of relevant open standards, the results of BCL are feeding into the
current OASIS e-contracts TC standardization22. In addition, some aspects of BCL
are similar in style to current business process definitions like BPEL45, WSLA44,
WS-CDL18 and WS-Policy46.

The distinguishing feature of BCL is that it was primarily developed with the
aim of specifying abstractions of the business contract domain and it allows a
business-oriented specification of policies or contract terms to be applied to existing
process definitions. In fact, one of the key targets for BCL is the specification of
policies for business-to-business interactions38. Early process technologies for work-
flow and most existing business process management products are restricted to
definitions of a local process with centralized control. There is no ability to express
constraints on interactions between autonomous business processes. The emerging
choreography technologies and standards18 address this deficiency. As with local
process management technologies, BCL can be seen as complementary to these
technologies.

In terms of commercial offerings, there are a number of dedicated contract
management vendors that have emerged in recent years. Examples are DiCarta11,
UpsideContracts40 and iMany17. A feature common to all these products is the
intention to support full contract lifecycle management. This ranges from collabo-
rative contract drafting and negotiation (mainly exchanging electronic documents),
through storage of contracts and milestone-driven notifications, to control and anal-
ysis features. These enterprise contract management systems generally follow the
database approach typical of most ERP systems and the contract semantics is im-
plicitly encoded as part of various data and processes. This is perhaps because
there is no overall model that expresses the semantics of contracts as a governance
mechanism for cross-organizational collaboration: this is the problem that is being
addressed by BCL, CEL and the like. It is also important to note that the commer-
cial offerings are also inward-facing, focusing on the definition and management of
contracts from the perspective of a single organization. In contrast, BCL provides
a cross-organizational model.

5.2. Alternate Choreography Technologies

Finesse pre-dates the recent work on choreography technologies by several years but
provides implemented technology and formal operational semantics satisfying the
key goal of choreography: to co-ordinate the behaviors of distributed, autonomous
participants in a business-to-business interaction. The semantic model provides ex-

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

44 Extending choreography with contract constraints

pressiveness equivalent to or exceeding the capabilities of major process models and
technologies like pi calculus26 and ebXML14. In particular, the explicit inclusion of
locality and causality, and the use of a truly concurrent operational semantics are
key distinguishing features that make it more amenable to describing processes that
span distributed, autonomous participants. With this operational semantics, the Fi-
nesse engine can be thought of as a distributed, asynchronous and programmable
process engine.

In the context of business contracts and choreography, we expect that the Finesse
engine or an equivalent choreography engine would be embedded in a the enterprise-
level interface to control and monitor the execution of business-to-business interac-
tions, with existing BPM and workflow technology used to manage processes behind
the web services interface within each organization. The current state of these al-
ternate technologies is not sufficient, however, to address many of the issues raised
in this transformation.

Web services choreography18 perhaps comes closest to providing the expressive-
ness and capabilities required for the implementation of contract constraints. It has
explicit roles, a level of abstraction over messaging, guarded behavior, the ability
to define local variables, and state alignment protocols for managing contract state
variables. That said, the current draft language has some design features that make
it difficult to directly apply contract constraints, specifically:

• Interaction is performed over two-party channels and is imperative rather than
implied, making passive monitoring (interception), multicast and roles with
non-unary cardinality very difficult to model;

• It uses an imperative notion of ordering structure including sequence, paral-
lelism and choice to capture dependencies between activities. While the ex-
pressiveness of this approach is similar to the declarative causal dependency
approach of Finesse, it can be structurally difficult to add new behavior to an
existing process definition. In other words, it is difficult to specify a logical AND
of two overlapping behaviors. This is ameliorated by the inclusion of a separate
structure for exceptions, since most behavior added in the transformation is to
deal with exceptions (i.e. contract violations); and

• Causality is not an explicit concept in the language and must be inferred from
ordering structures. The draft specification does not include a formal opera-
tional semantics, but if a model based on interleaved concurrency is chosen,
causality can be inferred incorrectly in certain situations.

Nonetheless, the draft standard is very promising. It is hoped that subsequent
revisions of the standard can take the issues mentioned above into account and
make it a much better platform for the implementation of contract constraints.

Process modelling notations like BPEL45, ebXML12,14 and BPMN6 are primar-
ily oriented towards the definition of centrally controlled processes and are not cur-
rently capable of implementing many of the constraints expressed in BCL. ebXML
and BPMN have notations to model distinct localities and messaging between those

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 45

localities, but fall short when attempting to model and identify the complex inter-
actions captured by BCL event patterns. The BPMN specification explicitly admits
its deficiencies in describing interactions between autonomous parties and identifies
this as an area for future work. That said, any of these notations could be used to
model and implement the local component of behavior associated with each party to
a contract. The technologies for implementation and management of local processes
based on these notations are also quite mature so it is likely that implementations
of monitoring systems based on choreography would interact directly with these
process management technologies. It will be important to accurately describe the
necessary interactions with these systems.

6. Conclusions and Future Work

In this paper we have used BCL and Finesse as vehicles to demonstrate the trans-
lation from business contract to process definition and they have proven to be quite
suitable for the task. We have previously shown that it is possible to monitor and en-
force a contract using a language-specific infrastructure like that presented for BCL
and BCA23,29,29,32, but we envisage that such contract specifications will be used
in environments based on standard process execution technologies like BPEL45 and
WS-CDL18 in future. This paper has provided an insight into the issues that need to
be addressed, and has identified several key semantic concepts in BCL and Finesse
that might contribute to future standardization efforts like OASIS eContracts22 and
WS-CDL18 respectively.

While there were many issues raised in developing a mapping from contract
to process, the exercise has indicated that a translation procedure is feasible and
potentially useful. There were no particular technology limitations in the transfor-
mation for this example and it is expected that the mapping presented will work in
a relatively generic fashion for the features used.

There is considerable scope for future work arising from the findings of this
paper, specifically:

• The usefulness of the translation needs to be explored further through more
complex examples to demonstrate its feasibility in a realistic business environ-
ment. We envisage that future development in model-driven transformation33

will also be considered;
• The addition of contract constraints to the example binding has shown a sig-

nificant increase in the complexity of the binding definition. The development
of improved syntactic representations of the binding to manage this complexity
would be valuable, for example, the addition of exception handling constructs
in the language and the ability to abstract over exception semantics;

• While many of the issues identified are quite general, the mapping presented
is specific to the BCL and Finesse languages and their respective semantic
models. The development of a mapping for alternate technologies, particularly
those embodied in standards-based work, would be very useful and relevant;

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

46 Extending choreography with contract constraints

• A key business issue in defining contracts and processes is the need for dynamic
change, as discussed in section 3.1. While we have suggested ways to ensure
the Finesse implementation of the BCL contract constraints is flexible, there is
considerable scope for future work in the management and implementation of
change in a process;

• There are features of BCL that have not yet been explored, for example, slid-
ing window temporal constraints23,29. Further work is required to develop a
complete and generic BCL to Finesse mapping; and

• The domain of contracts and policy specification is under active research. BCL
is evolving as the understanding of the domain improves, for example, in the
area of policy refinement and the description of priorities associated with policy.
These changes in the domain and BCL will need to be reflected in any mapping
to choreography expressions.

The example has presented a solution to the problem of implementing monitor-
ing and enforcement of contract constraints. It is important to remember that the
business-level aspects of the problem will often have a significant influence on the
implementation, for example, the issues discussed in section 4.1. While it is possi-
ble to translate contract constraints into expressions in a choreography language,
this might not always be a viable solution because the enterprise might require the
use of external tools or third parties that cannot be included in the choreography
for business or technological reasons. As noted in 4.1, for example, the need for
discretionary enforcement typically requires an external solution.

We conclude by emphasising the key contribution of the paper: that cross-
organizational business processes can be monitored and enforced according to busi-
ness contract specifications through the transformation of a precise contract defini-
tion to direct constraints on process behavior.

7. Acknowledgments

The work reported in this paper has been funded in part by the Co-operative
Research Centre for Enterprise Distributed Systems Technology (DSTC) through
the Australian Federal Government’s CRC Programme (Department of Industry,
Science & Resources).

The authors would also like to thank James Cole, Andy Bond, Michael Lawley
and Guido Governatori for their assistance in preparing this paper.

References

1. D. H. Akehurst. Transformations based on relations, 2004.
http://heim.ifi.uio.no/~janoa/wmdd2004/papers/akehurst.pdf.

2. Autonomic computing. http://www.research.ibm.com/autonomic/.
3. A. Berry. Describing and Supporting Complex Interactions in Distributed Systems.

PhD thesis, University of Queensland, 2002.

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

Extending choreography with contract constraints 47

4. A. Berry and S. Kaplan. Open, distributed coordination with finesse. In ACM Sym-
posium on Applied Computing, Feb. 1998.

5. A. Berry and K. Raymond. The A1
√

architecture model. In Open Distributed Pro-
cessing: Experiences with distributed environments. IFIP, Chapman and Hall, Feb.
1995.

6. Business process modelling notation, 2004. http://www.bpmn.org/.
7. CEL: Contract expression language, 2003.

http://www.crforum.org/articles/about/candidate.html.
8. P. Ciancarini and C. Hankin, editors. Coordination Languages and Models. Springer,

1996.
9. Content Reference Forum. http://www.crforum.org/.

10. N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder specification language.
Workshop on Policies for Distributeed Systems and networks (Policy2001), jan 2001.
HP Labs Bristol.

11. Dicarta. http://www.dicarta.com.
12. J. J. Dubray. Standards for a service oriented architecture, 2003.

http://www.ebxmlforum.org/articles/ebFor 20031109.html.
13. K. Duddy, M. Lawley, and Z. Milosevic. Elemental and Pegamento: the final cut: Ap-

plying the MDA pattern. In Proceedings of Enterprise Distributed Object Computing
(EDOC2004), Monterey, California, USA, 2004. IEEE.

14. The OASIS ebXML standards. http://www.ebxml.org.
15. A. Farrell, M. Sergot, M. Salle, C. Bartolini, D. Trastour, and A. Christodoulou.

Performance monitoring of service-level agreements for utility computing using the
Event Calculus. In First IEEE International Workshop on Electronic Contracting,
July 2004.

16. C. Fidge. Logical time in distributed computing systems. IEEE Computer, pages 28–
33, Aug. 1991.

17. iMany. http://www.imany.com.
18. N. Kavantzas, D. Burdett, and G. Ritzinger, editors. Web Services Choreography De-

scription Language Version 1.0. W3C, 2004. http://www.w3.org/TR/ws-cdl-10/.
19. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J. Loingtier, and

J. Irwin. Aspect-oriented programming. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP). Springer Verlag, June 1997.

20. R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation Com-
puting, 4:67–95, 1986.

21. R. Lee. A logic model for electronic contracting. Decision Support Systems, 4(1):27–44,
1988.

22. OASIS LegalXML eContracts. http://www.oasis-open.org/committees/legalxml-
econtracts/charter.php.

23. P. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kulkarni, and S. Neal. A unified
behavioural model and a contract for extended enterprise. Data & Knowledge Engi-
neering, 51:5–29, 2004.

24. Loosely coupled glossary: Choreography.
http://looselycoupled.com/glossary/choreography.

25. D. Luckham. The Power of Events. Addison-Wesley, 2002.
26. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes: Part I and II.

Information and Computation, 100(1), 1992.
27. Z. Milosevic. Enterprise Aspects of Open Distributed Systems. PhD thesis, University

of Queensland, 1995.
28. Z. Milosevic, A. Berry, A. Bond, and K. Raymond. Supporting business contracts in

February 25, 2005 0:6 Choreography with Contract Constraints IJCIS

48 Extending choreography with contract constraints

open distributed systems. In Proceedings of the Workshop on Services in Distributed
and Networked Environments. IEEE, 1995.

29. Z. Milosevic, S. Gibson, P. Linington, J. Cole, and S. Kulkarni. On design and im-
plementation of a contract monitoring facility. In The first IEEE workshop on E-
contracting (WEC04). IEEE, July 2004.

30. Z. Milosevic, A. Josang, T. Dimitrakios, and M. A. Patton. Enforcement of electronic
contracts. In Proceedings of Enterprise Distributed Object Computing (EDOC2002),
Lausanne, Switzerland, 2002. IEEE.

31. ISO/IEC 21000-5 Information Technology Multimedia Framework Part 5: Rights Ex-
pression Language, 2003.
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=36095.

32. S. Neal. A Language for the Dynamic Verification of Design Patterns in Distributed
Computing. PhD thesis, University of Kent, 2001.

33. Request for proposal: MOF 2.0 Query / Views / Transformations RFP.
34. Oracle Contracts. http://oracle.com/appsnet/products/contracts/.
35. O. Perrin and C. Godart. An approach to implement contracts as trusted intermedi-

aries. In First IEEE International Workshop on Electronic Contracting, July 2004.
36. ISO/IEC 10746-1 10756-2 10746-3 10746-4 Basic Reference Model for Open Dis-

tributed Processing.
37. ISO/IEC IS-15415 Open Distributed Processing-Enterprise Language, 2002.
38. K. Schulz and Z. Milosevic. Architecting cross-organisational B2B interactions. In Pro-

ceedings of Enterprise Distributed Object Computing (EDOC2000), Makuhari, Japan,
2000. IEEE.

39. R. Tag, Z. Milosevic, S. Gibson, and S. Kulkarni. Supporting contract execution
through recommended workflows. In Proceedings of the 15th International Confer-
ence on Database and Expert Systems Application DEXA04, Zaragoza, Spain, Sept.
2004.

40. UpsideContracts. http://www.upsidecontracts.com.
41. G. H. von Wright. Deontic logic. Mind LX, 237:1–15, 1951.
42. X. Wang, E. Chen, D. Radbel, H. Tsutomu, J. Clark, and G. Wiley. The contract

expression language - CEL. IEEE Contract Languages and Architectures (CoALa)
Workshop, Sept. 2004.

43. J. Widom and S. Ceri, editors. Active database systems: Triggers and rules for ad-
vanced database processing. Morgan Kaufman, 1995. ISBN 1-55860304-2.

44. Web service level agreements (WSLA) project. http://www.research.ibm.com/wsla/.
45. Business process execution language for web services, May 2003.

http://www.ibm.com/developerworks/library/ws-bpel/.
46. Web services policy framework (WS-Policy), 2004.

http://www.ibm.com/developerworks/library/specification/ws-polfram/.

