
Open, Distributed Coordination with FinesseAndrew Berry, Simon KaplanSchool of Information TechnologyThe University of Queenslandfandyb,simongdstc.edu.au
Coodination languages, distributed systemsAbstractCoordination languages have recently been attracting sig-ni�cant attention as a means of programming parallel anddistributed systems. The approach of separating coordi-nation from computation is particularly attractive in dis-tributed systems because there are a wide range of possibleinteraction, quality and reliability semantics that are eitherhidden or ignored by traditional infrastructures based on re-mote procedure call. Introducing an explicit, programmablemodel for the distributed infrastructure makes these seman-tics visible and tractable, without requiring substantial changesin distributed components. This paper presents Finesse,a language for describing the interaction of components inopen distributed systems, and demonstrates its power througha number of examples.1 IntroductionCoordination languages have recently been attracting sig-ni�cant attention as a means of programming parallel anddistributed systems. The approach of separating coordi-nation from computation is particularly attractive in dis-tributed systems because there are a wide range of possibleinteraction, quality and reliability semantics that are eitherhidden or ignored by traditional infrastructures based onremote procedure call (RPC). Introducing an explicit, pro-grammable model for the distributed infrastructure makesthese semantics visible and tractable, without requiring sub-stantial changes in distributed components.At the same time, research and standardisation in the�eld of Open Distributed Processing[3, 7, 13] has recog-nised the need to distinguish between the behaviour of dis-tributed components and their interaction. The notions ofbinding [3] and binding object [7] are conceptually equivalentto the coordination primitives in languages like Manifold[1]and ConCoord[6].This paper presents Finesse, a language for describingthe interaction of components in open distributed systems.

Finesse has evolved out of research in open distributed pro-cessing, beginning with the A1p architecture model[3] andmore recently, a semantic model for describing interactionsin open distributed systems[12]. The development of Fi-nesse is being driven by requirements of CSCW systems,whose implementors are demanding users and frequent crit-ics of existing distributed systems infrastructure[8, 4]. Thekey distinguishing features of Finesse are that:1. Finesse abstracts over communication, allowing trans-formation of data and compiler or run-time optimisa-tion of message passing between components.2. Finesse includes a representation of time, allowing thespeci�cation of quality of service properties;3. Finesse is independent of the language used for pro-gramming the distributed components. It is similar inconcept to CORBA IDL, for example, where the pro-gram is compiled to produce interface stubs for com-ponents in the chosen language(s);In this paper, section 2 gives an overview of the underly-ing semantic model, section three describes the languagesyntax and informal semantics, and section 4 presents anumber of examples. Section 5 discusses related work andongoing issues, and section 6 concludes the paper.2 Underlying Semantics2.1 Fundamental ConceptsFinesse is an executable language for describing complex in-teraction models and distribution mechanisms. Finesse isused to describe a binding, which is an abstract entity thatencapsulates the communication between distributed soft-ware components participating in an application. Bindingsare described in terms of the following fundamental con-cepts:binding: a binding is an infrastructure-provided con�gura-tion of network connections and behaviour. A bind-ing speci�cation in Finesse describes a con�gurationof components and their allowed or expected interac-tions.role: a binding has a set of roles that can or must be �lledby participating components. One or more compo-nents can ful�l a single role, providing a convenientabstraction for groups.



interface: components have interfaces through which theyinteract with their environment. Each interface is con-nected to one or more roles in the binding and mustimplement the behaviour speci�ed by the roles it �lls.events: components participate in a binding (interact) byexecuting events at their interfaces. Events have pa-rameters and direction (in or out).event relationships: event relationships specify the be-haviour and interactions of a binding by describingthe relationships between events occurring at objectinterfaces.A binding is instantiated by nominating a Finesse pro-gram (or some compiled form) and a set of components toful�l the roles of the binding. The underlying distributedinfrastructure is required to establish an appropriate set ofnetwork connections and supporting components to imple-ment the Finesse program. A Finesse program can be usedto generate stubs for the participating components in a sim-ilar manner to CORBA IDL, meaning that Finesse is some-what independent of the language used to build the partic-ipating components.2.2 Behavioural ModelEvent relationships provide the basis for describing behaviourin bindings. Event relationships capture the dependenciesbetween events at the interfaces of software components par-ticipating in a distributed application. Three distinct typesof event relationship are identi�ed:Causal relationships which describe the causal dependen-cies between events;Parameter relationships which describe the relationshipsbetween parameters of causally related events. Param-eter relationships de�ne the content of messages passedbetween interacting components, but in a declarative,application-oriented manner;Timing relationships which describe any real-time rela-tionships between events. These relationships can beused to describe, for example, timeouts or quality ofservice requirements of interactions.These concepts, combined with the notions of binding in-terface and role, provide an extremely powerful technique forthe description of distributed systems interaction. For ex-ample, it is possible to succinctly describe and easily extendremote procedure call, group communication, and streambehaviour. The ability to describe arbitrary interaction mod-els and parameter relationships gives considerable opennessand allows the integration of legacy systems. The semanticmodel described in [12] also includes powerful facilities forabstraction and composition of these behaviours, althoughonly some of those capabilities are visible in Finesse.3 Finesse Syntax3.1 Structure of a Finesse ProgramA Finesse program, also called a binding has an outer scopeintroduced by the keyword Binding and the name of thebinding, followed by a set of Import statements, and twosections de�ning roles and interactions. Roles de�ne therequired behaviour of participating components, and Inter-actions de�ne the relationship between events at di�erent

roles. Braces are used to delimit sections. Note that in thefollowing examples, ellipses (...) are used to avoid includ-ing unnecessary detail and are not a syntactic construct.The basic structure is thus:Binding Example {Import ...;Roles {...}Interactions {...}}3.2 Describing Roles and InteractionsA binding has one or more role de�nitions, introduced bya role name. A role de�nition can be pre�xed by a cardi-nality constraint enclosed in square braces, which constrainsthe number of components that can ful�l a role. The place-holder # represents the actual cardinality. Where no cardi-nality constraint is given, the default cardinality is exactlyone, for example:Roles {Client { ... }[#>=1] Server { ... }}This speci�es that there are two roles, Client and Serverand that there is exactly one Client and at least one Serverin the binding.The Interactions speci�cation de�nes relationships be-tween events occurring in the roles. Events are referred to bythe role name, followed by a period '.' and the event name.This reference to an event can also have a cardinality con-straint to deal with situations where multiple components�ll the role. For example:Binding Example {Import ...;Roles {Client { send! }[#>=1] Server { receive? }}Interactions {Client.send -> [#=all] Server.receive}} The place-holder # in the Interactions speci�cation refersto the number of components executing the event, while theplace-holder all refers to the number of components ful�ll-ing the role. In the above example, the client role executesa send event followed by all servers executing the receiveevent. In other words, this binding is a high-level descrip-tion of reliable multicast. As with role cardinality, eventexecution cardinality defaults to exactly one.Roles can contain named actions that group together aset of events and allow the Interactions section to refer tosome subset of the role when de�ning interaction behaviour,for example:Binding {Roles {Client {



read { send -> receive } -> write { ... }}...}Interactions {Client.read ...}} Named actions de�ne a scope for event names, allowingthe role and interaction de�nitions to distinguish betweensame-named events. Interactions can also contain namedactions to support inheritance and overriding.3.3 Events and Event RelationshipsThe behaviour within roles is de�ned by events and theirrelationships. An event is introduced by a name, a directionindicator, and a parameter list, for example:e!(x:t1; y:t2)where e is the event name, ! indicates that it is an outputevent, x,y are the event parameters, and t1,t2 are the datatypes of the parameters. Events are uni-directional, that is,they can be input events or output events but not both. The? character is used in place of the ! to indicate an inputevent.Event relationships are used to de�ne causality, param-eter and timing relationships between events in the role.Causality de�nes a partial order and is speci�ed with the ->operator, for example:e1!(x:t1) -> e2?(y:t2)This speci�es that event e1 must complete before evente2 begins. The -> operator is transitive and antisymmetric.Events not related by the causal order an occur in any orderand may even overlap in time if that is physically possible.An event can be followed by a speci�cation of its param-eter relationships. The speci�cation places constraints onthe values of the parameters. For example:e1!(x:t1; y:t2) -> e2?(z:t3) {z = f(e1.x)}Parameter relationship speci�cations can refer to anyidenti�able, causally preceding event. There is no require-ment that all parameters of any output event must be con-sumed by an input event, and the parameters of an outputevent can be used many times. In the general case illus-trated here, parameter relationships are functional, allowingfor transformation of data. For all parameter relationships,the function or operator used must be well-de�ned for thedata types of the parameters. This means, for example,that equality (=) can be used for parameters of di�erenttypes provided it is well de�ned in the context of the bind-ing. Due to its common use in RPC systems, Finesse hasshorthand syntax for name equivalence of parameters, thatis:e1!(x:t1; y:t2) -> e2?(x:t1; y:t2) {*= e1}This speci�es that all parameters of e2 are assigned thevalue of the same-named parameter of e1. Non-deterministicparameter relationships can also be speci�ed, for example:e1!(i:seqnr) -> e2!(i:seqnr) {e2.i > e1.i}

In order to simplify event identi�cation, the keywordprev can be used to refer to the immediately preceding eventin the current speci�cation context.Events can have guards. Guards are logical expressionsthat must evaluate to true for the event to occur. Timingconstraints are included in Finesse programs through guardsand the provision of three built-in functions: start, end andnow. Start and end take an event name as a parameterand return the time when that event started or ended re-spectively. Now returns the current time. For example:e1!() -> [now - end(e1) < 10.0] e2?()This speci�es that the event e2 must start within 10 sec-onds of e1 completing. Absolute time is extremely di�cultto represent and measure accurately in distributed systems,so guards involving time are only permitted to compare timedeltas. Literal values of time are represented as a real num-ber indicating a number of seconds. Implementations of Fi-nesse must allow for clock skew when evaluating time guardsinvolving events at di�erent locations.3.4 Composing Event RelationshipsFinesse has three primary composition operators for joiningevent relationships:AND is a logical AND of two speci�cations, synchronisingon same-named events and actions;OR is a logical OR of two speci�cations, synchronising onsame-named events and actions;XOR is a logical exclusive OR of two speci�cations.Synchronisation of events and actions means that theybecome the same occurrence of the event or action, and im-plies that their parameters and any ordering must be iden-tical.3.5 Inheritance and SubtypingFinesse supports inheritance as a means of code reuse, andexplicit speci�cation of subtype relationships with the im-plements keyword. For example:Binding Example inherits ExampleParentimplements ExampleBehav {...}The inherits keyword instructs Finesse to include theimports, roles, and interactions of the parent in the child.Roles and named actions de�ned in the child override same-named roles and actions in the parent. The remaining in-teraction behaviour is composed with a logical AND.The implements keyword is intended to allow speci�cimplementations of a high-level behaviour, for example, bothCORBA and DCE implement remote procedure call (RPC)that would be semantically equivalent for many applications.A high-level Finesse program for RPC could potentially bereplaced with either implementation. Although a completecomplexity analysis has not yet been attempted, it is be-lieved infeasible to automatically check subtyping speci�edwith the implements keyword. Simple checks for compat-ibility will be able to detect certain types of incompatibili-ties, however, �nal responsibility for the correctness of thesubtyping lies with the programmer.



3.6 Reuse and GenericsThe Import keyword allows role and binding de�nitions tobe re-used in the current Finesse program. It is followedby the name of a Finesse program to import. In the sim-ple case, role and binding de�nitions are re-used withoutparameterisation, for example:Binding Message {Roles {Sender {send!(x:t1)}Receiver {receive?(x:t1)}}Interactions {Sender.send -> Receiver.receive {*=Sender.send}}}Binding UseMessage {Import Message;Roles {Send2 {send1 {Sender} -> send2 {Sender}}Recv2 {recv1 {Receiver} -> recv2 {Receiver}}}Interactions {Message(send1, recv1) ANDMessage(send2, recv2)}} The roles of the Message binding are used to de�ne twoactions each in the Send2 and Recv2 roles respectively. Theinteractions section of the UseMessage binding simply bindsthose actions together using the Message binding. Whilethis can be useful, the ability to parameterise roles witharbitrary parameter lists give more exibility, for example:Binding Message {Roles {Sender (MSG) {send!(MSG)}Receiver (MSG) {receive?(MSG)}}Interactions {Sender.send -> Receiver.receive {*=Sender.send}}}Binding UseMessage {Import Message;Roles {Send2 {send1 {Sender(x:t1)} ->send2 {Sender(y:t2)} }Recv2 {recv1 {Receiver(x:t1)} ->recv2 {Receiver(y:t2)} }}Interactions {Message(send1, recv1) ANDMessage(send2, recv2)}} This allows us to reuse the interaction behaviour withdi�erent event parameter lists, allowing de�nition of bind-ings such as generic RPC or multicast.3.7 IterationIteration in the presence of concurrency requires two sepa-rate iteration semantics; one for dependent (sequential) it-

eration and one for independent (parallel) iteration. In Fi-nesse, both of these take the form of a post�x operator onan action or event. The *+ operator indicates that the ac-tion or event should be repeated with a causal dependencyon previous executions. The *- operator indicates that theaction of event should be repeated with no dependency onprevious executions. For example:Binding Example {Roles {Consumer { consume?(x:t1) *+ }Producer { produce!(x:t1) *- }}Interactions {{Producer.produce -> Consumer.consume} *-}} This speci�es a binding containing producer and con-sumer roles. The consumer can only consume one data itemat a time, while the producer can produce many data itemsin parallel, and each produce event results in a correspond-ing consume event.4 Example ProgramsThe following example programs, while not exercising allfeatures of Finesse, introduce the language and demonstrateits strengths. The �rst four examples illustrate how Finessesuccinctly handles the transition from two-party to multi-party interaction, and the �nal example shows the use oftime constraints with stream behaviour.4.1 Generic RPCThis Finesse program describes a generic RPC interactionwith two roles, client and server. The Roles section de�nesthe behaviour of the participants. The Interactions sectionde�nes the relationship between the roles. A set of requiredmessages and hence appropriate network connections can bederived from the behaviour.Binding RPC {-- generic RPCRoles {-- the client role is parameterised by a set-- of input and output valuesClient(IN, OUT) {-- the client executes a send (output)-- followed by a receive (input)send!(IN) -> receive?(OUT)}-- the server role is similarly parameterisedServer(IN, OUT) {-- the server receives then sendsreceive?(IN) -> send!(OUT)}}Interactions {-- the client send causes the server to-- receive, with parameters matched by nameClient.send -> Server.receive {*= prev} AND



-- the server send causes the client to-- receive, with parameters matched by nameServer.send -> Client.receive {*= prev}}}4.2 Using RPCUse of the generic RPC binding is demonstrated in the fol-lowing binding de�nition for �le input/output:Binding FileIO {-- read-only file access using RPCImport RPC;Roles {-- Client and Server implement open/read/closeClient {open {RPC.Client ((string name),(handle fh))}-> read {RPC.Client((handle fh, int bytes),(buffer buf, int bytes))} *+-> close {send!(handle fh)}}Server {open {RPC.Server ((string name),(handle fh))}-> read {RPC.Server((handle fh, int bytes),(buffer buf, int bytes))} *+-> close { receive?(handle fh) }}}Interactions {-- Client operations result in corresponding-- server operations.RPC(Client.open, Server.open) ->RPC(Client.read, Server.read) *+ ->Client.close -> Server.close {*= prev}}}4.3 Multicast RPCThe original RPC binding can be extended to support mul-ticast RPC. The client and server roles are unmodi�ed, al-lowing the original client and server to be used:Binding MultiRPC {Import RPC;Roles {Client { RPC.Client }-- the cardinality constraint specifies that-- there must be at least one server.[#>=1] Server { RPC.Server }}Interactions {-- a client send causes all servers to receiveClient.send -> [#=all] Server.receive {*= prev}

-- however, only one of the responses causes a-- result to be delivered to the client.[#=1] Server.send -> Client.receive {*= prev}}} This example introduces cardinality constraints associ-ated with roles and their behaviour. All roles in a bindingcan potentially be �lled by many participating objects. Bydefault, a role is �lled by only one participant. The additionof an appropriate cardinality constraint allows a role to be�lled by multiple participants. This use of cardinality con-straints provides a convenient and powerful mechanism fordescribing group communication.4.4 Using Multicast RPCA replicated �le access binding shows how the multicastRPC binding can be used:Binding ReplFileIO {-- replicated, read-only file accessImport MultiRPC, FileIO;Roles {-- Client and Servers reuse open/read/close.-- Only Server cardinality has changed.Client { FileIO.Client }[#>=1] Server { FileIO.Server }}Interactions {-- RPCs by client are multicast to serversMultiRPC(Client.open, Server.open) ->MultiRPC(Client.read, Server.read) *+ ->Client.close -> [#=all] Server.close {*= prev}}} This set of examples demonstrates how a basic interac-tion mechanism can be extended to suit new requirements.Notice in particular, that clients and servers are unchangeddespite the change in interaction mechanism. This suggestssigni�cant potential for reuse and legacy application inte-gration.4.5 Stream CommunicationThe following generic stream binding demonstrates how Fi-nesse can be used to describe quality of service require-ments, including time-related constraints. While this bind-ing describes only two-party interaction, it can be extendedfor multi-party stream interaction in manner similar to themulti-party RPC.Binding Stream {Roles {Producer(DATA) {-- sending with sequence number generation(send!(seqnr, DATA) ->[seqnr=prev.seqnr+1] send!(seqnr, DATA))*+}



Consumer(DATA) {-- receiving with correct ordering but-- allowing for loss of a packet of data-- between successful transmissions and-- requiring a minimum frame rate of 1-- frame/sec{receive?(seqnr, DATA) ->[seqnr - prev.seqnr < 2;seqnr > prev.seqnr;now - end(prev) < 1.0]receive?(seqnr, DATA)} *+}}Interactions {-- basic streaming transmission behaviour.-- Note that producing the next element of the-- stream is not dependent on the receipt of-- the previous element, hence the '*-'. Also-- note that not all produced events must be-- received, allowing lossy behaviour.{Producer.send -> Consumer.receive {*= prev}XOR Producer.send} *-}}5 Discussion5.1 Novel FeaturesFinesse has a number of features that are novel in coordina-tion languages. Of particular interest is the abstraction thatit provides over messaging. Messaging is implied by declar-ative relationships between events, meaning that a compileror interpreter can optimise the number and content of mes-sages transferred between components. The use of explicit,but abstract, parameter relationships allow parameters tobe ignored if not used. The use of causality relationshipsallows parameters from multiple events to be combined intoa single message from a particular interface where appropri-ate.Openness and exibility is enhanced by allowing arbi-trary parameter relationships. This can allow, for example,a DCE RPC client to call a CORBA server, provided theappropriate infrastructure and transformation functions arein place. The Finesse language has no structural knowl-edge of data types, freeing it from the con�nes of a speci�cdata model. The use of functional relationships betweenparameters also provides good support for including legacycomponents and applications in a Finesse binding.The inclusion of time constraints is both novel and veryuseful. Such constraints can be used to explicitly specifytimeouts and associated behaviour, or to describe quality ofservice constraints on, for example, the delivery of multime-dia streams.5.2 Open IssuesThere are a number of open issues associated with the syntaxand semantics of Finesse. These are summarised as follows:� Finesse has a terse syntax that is not especially friendlyfor �rst-time programmers. This keeps the languageand its programs small, but it might be appropriate tointroduce more familiar syntax, particularly for itera-tion and control structures, for example, if-then-else

or while constructs. Such changes are being consid-ered for future versions of the language, although thepresence of concurrency complicates the semantics.� It is often most appropriate to represent concurrencygraphically to make non-linear (i.e. split and join) de-pendencies clearer. There is also some merit in pro-viding a graphical \plumbing toolkit" containing com-monly used generic bindings like streams and RPC.A graphical programming environment based on theseideas would allay concerns about the terseness of Fi-nesse, allowing programmers to use this environmentfor most programs. There is an ongoing interest inproviding such tools for Finesse.� Finesse does not currently allow prede�ned event oraction types. These could for example, be used in amacro fashion to de�ne commonly used event signa-tures or patterns of behaviour. A similar e�ect canbe achieved by importing bindings de�ning roles withappropriate event and action de�nitions, but futureversions of Finesse might include explicit support forevent and action types.� Finesse does not support a structured data model. Foropenness and exibility, it leaves the management ofdata and types to the connected components. In orderto support rudimentary type checking and transforma-tion of data, parameters are associated with a typename. Functional transformations of data must besupplied by the infrastructure and may or may not bedependent on type names. Such an unstructured ap-proach to data typing is unpopular in some circles, andexperience with Finesse might suggest a more struc-tured approach in future versions.� One of the di�culties associated with roles is describ-ing behaviour for roles with a cardinality greater thanone. For example, how do you describe a multicastRPC that chooses the response with the highest ver-sion number? Finesse cannot deal with such situationsat present, so the component must implement thesesemantics. The most likely approach is to allow pa-rameter relationships to operate on event sets as wellas individual events.� When composing speci�cations from di�erent sources,there are sometimes situations where you want to syn-chronise on events having di�erent names. This is notcurrently possible with Finesse. Two possibilities arebeing considered to address this issue: either renamingor a set of explicit synchronisation primitives.� Finesse currently does not support reection or evolu-tion of behaviour. While theoretically possible, imple-mentation is di�cult because of the need to implementdynamically speci�ed parameter relationships and thesubsequent need to store all causally accessible param-eters at all times.A formal semantics for Finesse is partially complete, andis being used to assist in developing a prototype implemen-tation. The prototype is being implemented over Hector[2],a distributed systems infrastructure based on the principlesof the A1p model[3]. Hector supports the majority of theFinesse semantics, including multi-party bindings, exibleinteraction mechanisms, and an open data model. Compila-tion of Finesse programs requires the translation of Finessecode into program stubs and an executable Hector bindingdescription.



5.3 Related WorkCoordination languages are quite varied in their strengthsand features. The earliest attempts at distinguishing co-ordination from computation were based on Linda[5] anda number of variants are still in active use, indicating thepower of the shared tuple-space approach. These systemshave the advantage of a simple, yet powerful model of com-munication. Finesse lacks this simplicity but has a numberof advantages, in particular the ability to abstract over com-munication in a way that can be optimised, and the ability tocapture coordination protocols and build increasingly high-level abstractions of that coordination.More recently, a number of coordination languages havebeen based on the idea of building a network of connectionsbetween ports and/or interfaces, as is done by ConCoord[6]and Manifold[1]. ConCoord in particular has powerful ab-straction capabilities and language independence. The pri-mary di�erence between these languages and Finesse is thatFinesse does not use explicit connections between interfaces,with the causal and parameter relationships allowing the op-timisation of messaging and message contents. This does,however, introduce additional complexity that might not bedesirable. Neither the connection based languages or theshared tuple-space languages support real-time constraintsto the extent supported by Finesse.Darwin[11] is a language for describing the static, struc-tural connections of a set of components without explicitlydescribing their behaviour. Coupled with a distinct com-ponent speci�cation language, for example that used in [9],it can be used to describe similar behaviour to Finesse. Itdoes not distinguish between components that perform com-putation and components that connect other components(i.e. bindings). In many systems this is quite appropri-ate, however, the failure and execution model of softwarecomponents running on a single computer system is quitedi�erent from that of the network connections supportingthe interconnection of those components, suggesting a dis-tinct language like Finesse is preferable in open distributedsystems.Finesse is most similar to Rapide[10], an architecture de-scription language based on posets (partially ordered sets ofevents). Rapide is intended as a simulation language forsoftware engineering. It is event-based, with a true concur-rency model based on causality, and uses event patterns forabstraction and synchronisation. Rapide also has extensivesupport for real-time constraints. Finesse di�ers most fromRapide in the way abstraction is handled, and in its datamodel, since Rapide has a �xed, structured data model.6 ConclusionThis paper has described Finesse, a coordination languagefor open distributed systems. A Finesse program or bindingdescribes the roles of components in a distributed applica-tion and the interactions between those roles. Roles andinteraction are described using event relationships, in par-ticular, causality (ordering), parameter and timing relation-ships. Finesse has strong support for group communicationand provides abstraction through structuring and composi-tion features. The examples presented in this paper suggestthat Finesse can succinctly describe a wide variety of coor-dination protocols in a exible and easily reusable manner.The key advantages of Finesse over existing coordinationlanguages are: its abstraction of communication; its open,unstructured data model; and its support for real-time con-

straints. It does su�er to some extent from the complexityand unfamiliarity of these features, but o�ers a powerful,alternative approach to the problem of coordination in opendistributed systems.References[1] F. Arbab. The IWIM model for coordination of concur-rent activities. In Coordination Languages and Models,number 1061 in Lecture Notes in Computer Science.Springer, 1996.[2] D. Arnold, A. Bond, M. Chilvers, and R. Taylor. Hec-tor: Distributed objects in python. In Proceedings of the4th International Python Conference, Livermore, Cali-fornia, June 1996.[3] A. Berry and K. Raymond. The A1p architecturemodel. In Open Distributed Processing: Experienceswith distributed environments. IFIP, Chapman andHall, February 1995.[4] G. Blair and T. Rodden. The challenges of CSCW forOpen Distributed Processing. In Open Distributed Pro-cessing, II. IFIP, North Holland, 1993.[5] N. Carriero and G. Gelernter. Linda in context. Com-munications of the ACM, 32(4):128{139, April 1989.[6] A. A. Holzbacher. A software environment for concur-rent coordinated programming. In Coordination Lan-guages and Models, volume 1061 of Lecture Notes inComputer Science. Springer, 1996.[7] ISO/IEC 10746-1 10756-2 10746-3 10746-4 Basic Ref-erence Model for Open Distributed Processing.[8] Simon Kaplan, Geraldine Fitzpatrick, Tim Mans�eld,and William J. Tolone. MUDdling through. In Proceed-ings of the Thirtieth Annual Hawaii International Con-ference on System Sciences: Information Systems|Collaboration Systems and Technology, 1997.[9] J. Kramer and J. Magee. Exposing the skeleton in thecoordination closet. In Coordination Languages andModels, number 1282 in Lecture Notes in ComputerScience, pages 18{31. Springer, September 1997.[10] D. C. Luckham and J. Vera. An event based architec-ture de�nition language. IEEE Transactions on Soft-ware Engineering, September 1995.[11] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Spec-ifying distributed software architectures. In Proceedingsof the 5th European Software Engineering Conference,September, 1995.[12] A. Rakotonirainy, A. Berry, S. Crawley, and Z. Milo-sevic. Describing open distributed systems: A foun-dation. In Proceedings of the Thirtieth Annual HawaiiInternational Conference on System Sciences: SoftwareTechnology and Architecture, 1997.[13] K. Raymond. Reference Model of Open DistributedProcessing (RM-ODP): Introduction. In Open Dis-tributed Processing: Experiences with distributed envi-ronments. IFIP, Chapman and Hall, February 1995.


