
Policies in Communities:
Extending the ODP Enterprise Viewpoint

Peter Linington1, Zoran Milosevic2, Kerry Raymond2

1) Computing Laboratory, University of Kent at Canterbury, pfl@ukc.ac.uk

2) CRC for Distributed Systems Technology (DSTC), {zoran, kerry}@dstc.edu.au

Abstract
The Reference Model of Open Distributed

Processing (RM-ODP) introduces the notion of an
enterprise viewpoint and provides a minimum set of
concepts for structuring enterprise language
specifications. This paper extends the RM-ODP
enterprise concepts by exploring how policy can be
modelled within and between communities. A model
for enterprise behaviour based on physical and
social actions is presented.

1. Introduction

The RM-ODP framework is increasingly being
used for modelling complex open distributed
systems, such as those in the domains of telecommu-
nications, finance, education and defence (e.g. C4I
environments). While some of the ODP viewpoint
languages, in particular computational and engi-
neering are developed in sufficient details to describe
programming and infrastructure artifacts of any
distributed system, this is not true of the enterprise
language. On the other hand, the availability of
maturing distributed infrastructure platforms such as
CORBA, DCOM, DCE and Java-RMI increasingly
encourages the use of distributed objects for business
applications. As a result, the IT community is
shifting its interest from platform issues towards
enterprise specifications. There is an increasing
demand from industry to use enterprise specifications
to improve the accuracy of the design of distributed
systems, in particular those that cross various admin-
istrative and organisational boundaries.

The existing ODP enterprise language, consisting
of a limited number of concepts and structuring
rules, needs further extensions and refinements in
order to be better suited for enterprise modelling of
practical open distributed systems. For example,
there is a need for rigorous specification of policies
governing the behaviour of complex systems and
automated sub-systems. These policies need to be
made explicit because their monitoring and enforce-
ment will require actions by the system imple-
mented, and the correctness of these actions can only
be guaranteed if there is a well defined framework
for the description of concepts such as ownership,
right, objective, authority, delegation and policy.

This paper seeks to expand on the Enterprise
Viewpoint of the Reference Model for Open Distrib-
uted Processing, particularly from Part 2 (Founda-
tions) [7] and Part 3 (Architecture) [8] by drawing
together recent developments in a number of
research areas, and hopes to contribute to the work
on the extended enterprise language currently under
development within the ISO [9].

Specifically, this paper focuses on a subset of the
enterprise concepts, namely on the notions of
community and policy (permissions, prohibitions
and obligations), and endeavours to provide a more
precise framework for reasoning about these funda-
mental enterprise concepts. It aims to establish a
common vocabulary and structure for use by enter-
prise notations, allowing the unambiguous specifica-
tion of enterprise requirements.

Section 2 begins by exploring the applicability of
the existing ODP enterprise language for describing
complex ODP systems which involve the behaviour
of people and human organisations. Section 3
follows with a summary of the latest results from
deontic logic that are relevant to the concepts of obli-
gations, permissions and prohibitions. Much of the
ODP modelling experience is focussed on the
computational viewpoint, and Section 4 outlines why
the enterprise viewpoint needs a different modelling
approach, resulting in the derivation of models of
individual enterprise objects (Section 5) and commu-
nities of enterprise objects (Section 6). Conclusions
are presented in Section 7.

2. The Enterprise Viewpoint

Most specification activities which use the ODP
viewpoints begin with the enterprise specification in
order to establish the purpose, scope and policies of
the ODP system [8]. This must be a very abstract and
flexible specification if it is to provide guidance
throughout the growth and evolution of the system,
and must not over-constrain the other viewpoints.
However, it must state the policies to be supported
clearly and unambiguously.

Before policies can be expressed, the specification
must define the specific vocabulary and structure of
the enterprise. It does this by defining a number of
communities and roles within them, and in stating the
ways in which these communities are related.

The ODP concept of a community is a “configura-
tion of objects formed to meet an objective ...
expressed as a contract which specifies how the
objective can be met” [8] where a contract is “an
agreement governing part of the collective behaviour
of objects” [7]. This collective behaviour is
expressed in terms of roles, where each role identi-
fies some subset of the overall community behaviour
that can be meaningfully performed by a single
object within the community.

The concept of a role is sufficiently general to
specify the behaviour of entities which can be either
(parts of) IT systems or people. The specification of a
system in terms of the key roles and their relation-
ships enables a stable specification in spite of the
facts that the roles may be filled by enterprise objects
of a wide variety of natures and that their nature can
evolve over time [18]. For instance, a role in a system
which was initially allocated to a person can, at a
later stage, be filled with an automated entity. Such
an entity will provide the same functionality as a
person, perhaps with a better performance, but
reduced flexibility, and often with lower costs to the
overall system. Numerous examples from different
domains illustrate this point, e.g. telephone banking
services and automatic teller machines in banking,
robots in manufacturing, automated pilots in the
aircraft industry. In spite of the fact that automated
systems increasingly replace people in their tradi-
tional roles, the description of the system in terms of
roles and thei r re la t ionships of ten remains
unchanged.

The ODP enterprise language concepts of obliga-
tions, permissions and prohibitions can be used to
express policy statements associated with the roles
and the enterprise objects filling them; these policies
may be a constraint on, or an extension of, the orig-
inal behaviour. Policies typically reflect some social
norms, such as legal norms from the underlying
jurisdiction domain, management norms emanating
from the rules of a particular organisation or the
norms adopted by various non-formal social groups.
As such, policies introduce terms and rules of the
corresponding background language, e.g. normative
concepts of business contract law and ethical or
privacy codes of medical practitioners.

In general, policies apply to either the roles or the
enterprise objects that can fill them. They apply to
the roles in cases where the roles describe some
generic behavioural patterns pertinent to the descrip-
tion of the role itself, such as a CEO role, or a role
describing obligations of medical doctors in a
specific community. On the other hand, policy state-
ments can apply to enterprise objects which fulfil
roles, such as those related to the owners of real-
estate properties, driver licence holders and so on.
They can also apply to the process of assigning enter-
prise objects to the roles.

There are certain policy statements that can be
fully supported within the underlying infrastructure.
Examples are those policies which reflect some of
the unambiguous rules of a background community,
e.g. business contract laws in most western countries.
These policies can be implemented and, to some
extent, enforced within an ODP system [12].

There are other kind of policies that should take
into account the actions of enterprise objects which
model people. Such policies have to be expressed in
terms of necessary constraints, leaving a great deal of
freedom in determining the actual behaviour of the
people concerned. In general, people can introduce
elements of hidden internal behaviour or act in an
opportunistic way to maximise their rewards based
on their personal objectives. These characteristics of
people, coupled with imperfect information about
them, lead to uncertainty with respect to their
actions. Economic agency theory is a class of game-
theoretic approaches that can be used to design the
optimal strategy of agents in the presence of uncer-
tainty. The primary means for people to increase
certainty in an otherwise uncertain world is to enter
into contracts and to join communities, as contracts
and communities specify an agreed behaviour among
a set of enterprise objects. The design of optimal
contracts is described in [13], which also presents an
infrastructure for contracts and contract enforcement.

Therefore, there are two aspects to behaviour
when considered from the enterprise viewpoint. One
is an object’s inherent behaviour, reflecting its
internal objectives as well as its physical capability
to undertake actions and interactions. Another aspect
of its behaviour is when the object is considered as
part of a community (i.e. the object fills a role within
a community), through which the object acquires
additional objectives and becomes subject to addi-
tional policies. The ODP enterprise concept of
community is introduced to model how a group of
enterprise objects achieve their individual objectives
through commonly agreed patterns of interaction.
This agreement is institutionalised through the
contract. If an object wishes to participate in a
community, it is obliged to comply with policies set
out in the contract of that particular community. This
implies a need for an enterprise object to modify its
internal behaviour according to the policies of that
community. We refer to the resulting object’s behav-
iour as its social behaviour.

3. Deontic Logic

The concepts of permission, prohibition, and obli-
gation are formally studied in deontic logic. This
logic is suitable as a starting point for the specifica-
tion of any normative system, i.e. a system in which
the behaviour of interacting agents (be they people or
automated systems), is governed by a set of norms.
The concepts of obligations, permissions and prohi-

bitions are often referred to as deontic statements
about a system. In the context of an ODP specifica-
tion, deontic statements express a deontic structure
of a system, which should be stable irrespective of
the underlying infrastructure. Consider for example,
a statement of an enterprise prohibition on a partic-
ular group of users from reading some files.
Although this enterprise (deontic) statement can be
true, the infrastructure may fail to enforce it, e.g. an
access control can be imperfect or disabled.

3.1. Problems with using Deontic Logic

RM-ODP [7] bases its definitions of permission,
prohibition, and obligation on standard deontic logic.
However, standard deontic logic considers only a
static picture and does not take into account the inter-
actions of agents, as discussed in [4]. These limita-
tions of the standard deontic logic present significant
difficulties for the needs of practical enterprise
modelling and lead us to consider some new develop-
ments in the fields of deontic logic, agency and
normative systems.

3.1.1. Static versus Dynamic

Most of the systems of deontic logic consider a
very static picture in terms of the relationships (i.e.
logical connections) between co-existing obligations
and prohibitions [3]. While this can be a good
approximation for prohibitions, as they often arise
from general ethical principles or standing laws, this
is not satisfactory in the case of obligations, which
have a more dynamic nature. In fact, most obliga-
tions1 require to be discharged at certain points in
time and new obligations can be undertaken or be
imposed (through some external authority) at various
points in time. These new obligations can also intro-
duce conflicts with the existing obligations and these
need to be resolved.

3.1.2. Impersonal versus Personal

In addition to its static nature, standard deontic
logic centres around impersonal statements such as
‘it ought to be that ...’. These impersonal statements
do not capture the distinction between “ought to be”
and “ought to do”, which requires the introduction of
an explicit concept of an agent carrying out a respon-
sibility. In contrast, personal statements clearly iden-
tify the agent which “ought to do”, yielding a more
precise set of policies applicable to each enterprise
object. A general review of problems with the inter-
pretation of deontic logic (written for computer
scientists) is presented in [11]. These are real prob-

1.Apart from the so-called standing obligations which can never be
fully discharged [3].

lems, and require a powerful and flexible model to
meet the uncertainties in the real world that give rise
to the problems.

3.2. A Model for Obligation

Recent results from deontic logic, combined with
the logics of action, agency and ability, enable better
description of deontic statements that correspond to
the real world situations. This section summarises
some of these results that we find relevant to enter-
prise modelling.

The dynamic nature of obligations can be
analysed through the notion of forward branching
time, that models indeterminism of the future and
determinism of the past [6]. The moments in time are
ordered into a tree like structure with forward
branching representing the indeterminism of the
future and the absence of backward branching repre-
senting the determinacy of the past, as illustrated in
Figure 1. In other words, this tree represents a set of

possible worlds in future and also a complete
temporal evolution of the world. In such a tree, a
history h represents a maximal set of linearly ordered
sets of moments, a single complete branch of the
tree. It is shown that in evaluating formulas (e.g.
about an action A of an agent) against the branching
temporal frames, one needs to take into account both
a moment together with a history through that
moment. The branching tree defined in this way is
suitable for expressing dynamic but impersonal
deontic statements (i.e. the statements which do not
involve agents).

When supplemented with the model of actions of
agents, the tree structure can be exploited to model
their action choices, based on von Neumann’s theory
of games [14]. These choices reflect a set of possible
alternatives for actions of agents, thus enabling
expressions of personal deontic statements. This
allows modelling of influence that agents are able to

m1 m3

m2

h1

h2

h3

h5

h4

Figure 1. Forward-branching time

h6
Time

exercise upon the course of history, i.e. it allows
modelling of their actions or choices at a given
moment. Formally, by acting at moment m, an agent
a can select one of its choice sets, Si of the histories
through a moment m. For example, at m1, an agent a
can choose one of the choice sets S1, S2 or S3, as
illustrated in Figure 2. If agent a chooses S1, it can

then face another choice of actions at m2, leading to
the realisation of one of the histories, h1 or h2.
Further, if any of two histories are undivided at a
moment, they must lie within the same choice set.
Although histories h4 and h5 divide at m3, agent a has
no influence on the choice, which is performed by
agent b. In some circumstances, choices are made by
the environment (nature), and none of the agents can
determine the outcome.

With this model as the foundation, a deontic
formula for a permission, prohibition or obligation
partitions the paths through the tree into paths that
satisfy the deontic statements and those that do not.

Finally, this tree structure can be further enriched
to model priorities or weights that agents assign to
their different choices. For this, a value (or utility)
function can be associated with each of the histories
and, if there is probabilistic information related to
various outcomes of selecting an action, the agents
should select a strategy which maximise their
expected utility function. This function is the sum of
the values of the various histories of a choice set,
weighted by the probability assigned to each history
[6]. If these probabilities are not known (which is
often the case in real life situations), a dominance
ordering, based on a game theoretic approach for
dealing with choices under uncertainty can be
applied [6]. This interpretation of expected behaviour
in terms of perceived value can be related to the 18th
and 19th century concept of utilitarianism [17]. Note
that the value function reflects both the desirability of
the ultimate outcomes and the current set of obliga-
tions.

It is important to note that the above model is
more suitable for modelling normative systems than
the standard deontic logic systems. It supports the
dynamic nature of deontic statements and also allows
personal deontic statements, those that are more
closely related to the actions of agents. The frame-
work was initially proposed by Belnap and Perloff
[2] and further contributions were made by Horty [6]
and Brown [3]. This framework provides a founda-
tion for the terms and grammar of the so called stit
sentences, namely the sentences of the form ‘see to it
that’. It is argued in [2] (and the series of papers
based on this) that the statements of the form [a stit:
A], where a is an agent and A is an action statement,
are the most suitable linguistic construct for
describing alternatives and choices which assigns an
action to an agent. This formulation is a development
from classical speech act theory [1] and, which by
making agency more explicit, makes the structure of
obligations clearer. A computational technique for
making agency explicit is given in [10] in which
policy statements are expressed in terms of both
subject and target. Further description of the stit
semantics and grammar is beyond the scope of this
paper.

Therefore, while standard deontic logic may be
satisfactory for impersonal oughts, it is not sufficient
for the descriptions of situations in which actions are
attributed to agents. These situations need to be
described when reasoning about the agents doing
actions in a social context and are needed to specify
enterprise objects filling roles in a community.

The model of temporal frames, augmented with
the notions of choice sets and utility functions,
provides a foundation for deriving a framework for a
more elaborate semantic model of permissions,
prohibitions and obligations than is currently
included in ODP standards. Section 5 provides such
a framework which can serve as a reference model
for interpretation of personal deontic statements in
the ODP enterprise language.

4. Enterprise Modelling is Different to
Computational Modelling

All of the above suggests that the enterprise
modelling of concrete ODP systems involves issues
which are quite different from computational model-
ling, which is well-understood within the ODP
community. The existing ODP enterprise concepts
and structuring rules related to the concept of
community [8] need to be extended and refined to
provide a framework for modelling policies and their
relationship with the behaviour of enterprise objects
and communities.

m1:a

h1

h2

h3

h5

h4

h6

S1

S2

S3

Time

m2:a

m3:b

Figure 2. Action choices

4.1. Enterprise Behaviour

When considering enterprise behaviour (espe-
cially when human behaviour is involved), we need
to adopt a more sophisticated model of behaviour
than that used for computational behaviour. In
theory, human behaviour is completely unpredict-
able. A person can choose to do (or not do) anything
at almost any time. Attempting to express enterprise
behaviour in a computational manner tends to result
in a chaotic specification:

EnterpriseBehaviour ::=
[any action I am capable of];
EnterpriseBehaviour

Yet enterprise behaviour is rarely chaotic in prac-
tice, because the entity being modelled chooses to
constrain its behaviour in order to achieve its own
objectives or to conform to the expectations of
others. This ability to choose to constrain its behav-
iour in some way reflects the concepts of “free will”
or “intention” of enterprise entities.

Thus the policy framework proposed here
assumes that enterprise behaviour can be described at
two levels:

• physical behaviour (a.k.a. inherent behav-
iour) which describes the widest (most
permissive) view of the object’s behaviour,
assuming it can perform any action it is
capable of, constrained only by any internal
programmed sequencing or physical realities.
E.g. a person is capable of loading a gun and a
person is capable of firing a gun, but the gun
cannot be fired until it has been loaded.

• social behaviour which describes a subset of
the physical behaviour, which is constrained
by the decision of the object to meet its objec-
tives or to conform to a community. E.g. a
person might constrain themselves to load a
gun only immediately before firing, either
because of their own concerns or the concerns
of their community about the dangers of
leaving loaded guns around.

When considering type matching of enterprise
behaviour, it must be recognised that only type
matching of physical behaviour can be tested a priori.
Physical behaviour matches a role without regard to
the constraints placed on that role by the contract,
just as, in the computational specification, type
matching depends only on the types of the interfaces
concerned, not on the broader view of the configura-
tion in which they occur. If an enterprise object
possesses appropriate physical behaviour, it can
satisfy any social behaviour based on that physical
behaviour if it chooses to do so. So, an enterprise
object can assert that it can satisfy a social behav-
iour; this implies it will undertake the obligation (a
social constraint) to conform to that social behaviour.

Thus an enterprise object can take on an obligation to
“see to it that” the necessary restrictions in behaviour
are performed.

Obviously, an enterprise object can undertake
many social constraints (obligations to conform to
some social behaviour). Indeed, it might undertake
too many and find itself with conflicting or incon-
s is tent obl iga t ions . There i s l i t t le point in
constructing a policy framework that prevents
conflicting/inconsistent obligations, since they occur
constantly in the real world. Instead, this policy
framework assumes that an enterprise object assigns
priority to some obligations over others, and that
these priorities may change over time (as discussed
in Section 3.2).

Both the physical and social behaviour of an
enterprise object are dynamic. An enterprise object
might learn new skills (enlarging the alphabet of
physical behaviour) or forget them (reducing the
alphabet of physical behaviour). An enterprise object
might join a community, leading to new obligations
constraining its social behaviour, or it might leave a
community, relaxing its social behaviour.

4.2. Enterprise Actions

The “doing of something” is an action. Concepts
like activity and behaviour are related in the normal
RM-ODP manner [7]. An enterprise action:

• can involve one or more players, each playing
a labelled participant-role in the action
template. Interactions have more than one
participant-role, although all participant-roles
could be carried out by the same enterprise
object.

• happens if:
• the action is ready (i.e. the precondition of

the action is satisfied), and
• all of the players of the action are:

• willing to perform that participant-role
based on their social behaviour (i.e. it
is appropriate given their objectives
and obligations)

• able to perform their participant-role
in terms of having the ability to play
that participant-role, satisfying the
predicate associated with the
exercising of that ability, and
satisfying any physical behavioural
constraints

When considering the readiness of a multi-player
action, the question arises about who is responsible
for detecting the readiness and causing the action to
begin. The answer depends on the level of abstrac-
tion. At a high level of abstraction, the precondition
will be presented as a simple predicate without
regard to how it would be evaluated. At a lower level
of abstraction, this multi-party action would be
refined into sub-actions, some of which would be the

detection of the readiness to start the high-level
action and the consequent notification of other
players to be involved in that high-level action.

Enterprise actions can be either physical actions
or social actions (see Section 4.3) or both. Driving a
car fast is, for the car, a physical action. Having an
accident is a physical action. Choosing to drive fast,
or (after the accident) choosing to drive slowly is a
social action. The car still includes driving fast in its
behaviour, but the driver applies a social constraint.

4.3. Social Actions

Physical behaviour of an enterprise object has
associated physical state (e.g. which cars are in my
driveway). Social behaviour has associated social
state, which consists at least of:

• the objectives of the enterprise object
• the roles filled by the enterprise object
• the permissions, prohibitions, and obligations

of the enterprise object
• the relative weightings of objectives and obli-

gations
So, enterprise objects have social actions corre-

sponding to:
• acquiring, relinquishing, and re-prioritising

objectives
• joining/leaving a community (filling/un-

filling a role) and the corresponding acquisi-
tion, relinquishing, and reprioritising of
objectives

People regularly undertake a role with an obliga-
tion to do X, despite intending not to do X, when it
conflicts with some other objective/obligation. That
is, people do take on roles in the presence of
conflicting obligations/objectives, but handle that
conflict by assigning relative priorities to the
conflicting obligations/objectives. They may make
that assignment at the time of taking on the new obli-
gations, or as late as when the conflict “occurs” (i.e.
when there is no actual behaviour available that does
not violate one or other of the obligations).

At a high level of abstraction, the social actions
relating to objectives and participation in communi-
ties are sufficient. However, at more detailed level,
these social actions involve a complex web of plan-
ning and decision-making, often based on imperfect
knowledge about other enterprise objects. Planning
and decision-making are social actions for devising
future behaviours that lead to the achievement of
obligations/objectives. Many enterprise objects
(especially people) have significant social state and
corresponding social actions relating to planning and
decision-making.

As most enterprise objects engage in interactions
with others, it becomes more difficult to make
detailed long-term plans, due to the time required to
analyse each of the combinatorial explosion of future
scenarios, as illustrated in Section 3.2. (A social

activity need not have any physical embodiment, but
it still can take time and “brain space”). Therefore,
plans tend to be more detailed in the short term,
while the long-term plans tend to be less detailed. By
being more abstract, long-term plans are more stable
in the presence of change, and can be refined later to
determine the necessary details.

Since plans are significantly impacted by the
behaviour of others, enterprise objects that plan tend
to have social state relating to the behaviour of
others, in terms of their objectives, roles, obligations,
and weightings. This knowledge is used to remove
unlikely scenarios from the planning activity,
enabling time spent planning to focus on the analysis
of likely scenarios in detail. Unfortunately, knowl-
edge about other enterprise objects can be imperfect
for many reasons:

• the information released about another enter-
prise object might be deliberately incomplete
or inaccurate (this might be consistent with
the objectives/obligations of that enterprise
object)

• correct information may be released but it
might not have been circulated sufficiently far
or sufficiently fast or sufficiently reliably

So, information about other enterprise objects will
tend to be associated with some “reliability estimate”
reflecting the quality of the source of the information
or the means by which the information was obtained.

Even in the presence of accurate knowledge of an
enterprise object, we cannot rule out that the enter-
prise object will suddenly not conform to the behav-
iour expected by its objectives/obligations. So, this
enterprise object will tend to keep “reputation esti-
mates” of other enterprise objects, reflecting its
expectation that their behaviour will be conformant.
It is entirely possible for a well-behaved enterprise
object X to have a bad reputation with another enter-
prise object Y, due to X’s incorrect knowledge of the
conformant behaviour expected of X. These esti-
mates of reliability of knowledge and reputation of
other enterprise objects are all factors considered in
deciding which future scenarios are sufficiently prob-
able to merit detailed analysis.

All of this additional social state has associated
social actions to create, update, and exchange social
state. To manifest these social actions may require
physical actions, e.g. communication between enter-
prise objects. However, such physical actions will
usually occur at a lower level of abstraction and
hence are not shown as distinct in the enterprise
specification.

Research in economics and distributed artificial
intelligence investigates the issues pertinent to social
actions, and these will be used to model many
aspects of social behaviour.

5. Enterprise Objects

Enterprise objects can either be “atomic” entities,
or can be refined into a community of objects (see
Section 6). Enterprise objects have abilities, objec-
tives, and policies (permissions, prohibitions, obliga-
tions).

5.1. Abilities

An ability represents the action-playing that an
enterprise object is capable of in terms of its physical
behaviour.

An ability is described by:
• an action template/type
• a participant-role within that action
• an associated predicate, expressed in terms of

any parameterisation of the behaviour and the
players within the action

If an enterprise object has an ability, then that
object is physically capable of playing that partici-
pant-role in that action, provided the predicate is
satisfied. Having the ability does not imply that the
enterprise object will play that participant-role; it
might have undertaken obligations not to do so. The
collection of abilities possessed by an enterprise
object together with the physical (or programmed)
constraints on those abilities determines an enterprise
object’s physical behaviour.

5.2. Objectives

Enterprise objects have objectives; these objec-
tives guide any internal choice in the enterprise
object’s behaviour (see Section 3.2). For some enter-
prise objects (e.g. manufactured artifacts), the pursuit
of the objective is pre-programmed. However,
sentient enterprise objects (e.g. people) could be
described as under an obligation to achieve their
objective. Thus, for most modelling purposes, objec-
tives can be regarded as pre-existing (background)
long-term obligations.

To work toward an objective, enterprise objects
may decide to join (or leave) a community.

5.3. Policies

5.3.1. Permission

RM-ODP defines permission as “a prescription
that a particular behaviour is allowed to occur. A
permission is equivalent to there being no obligation
for the behaviour not to occur.”

A permission is defined by:
• an action
• a participant-role in that action
• a predicate on social behaviour
• a community-role
• an authority which grants the permission

If an enterprise object has this permission, then,
when the predicate is true, the enterprise object can
play the participant-role in the action when filling the
community-role, by order of the authority.

There are two ways of looking at the concept of
permission. The ODP text follows standard deontic
logic in describing the way the world is, in terms of
what actions may occur; this corresponds to the idea
of “having permission”. However, there is another
common usage, associated with “granting permis-
sion”, in which there is an implicit or explicit agency,
and there are consequential obligations on the
authority as a result of granting a permission. The
authority should not normally simultaneously grant a
permission and prevent the permitted action from
taking place. Thus, the second statement in the ODP
definition is weaker than the first, because it fails to
recognise that permission can be “empowering”. If X
is permitted to do Y, then X has the luxury of
choosing whether or not to do Y, but the authority has
no such choice; it is obligated to allow X to do Y.

A real-world analogy is “I permit you to use my
car today”. You might or might not choose to use the
car, but I have obligated myself to not refuse you the
keys. However, permission does not require the
authority to take all possible steps to facilitate X
doing Y. For example, giving permission to use my
car does not obligate me to fill the car with petrol,
arrange for you to get a drivers licence, etc.

However, “I permit you to use Bill Clinton’s car”
is not a valid permission, as I cannot undertake the
obligation to make Bill Clinton’s car available. Of
course, I can undertake the obligation, but I cannot
fulfill it, unless Bill Clinton’s car (or the enterprise
objects that control access to it) recognises my
authority over it. This is discussed further in Section
6.3.

However, analysis of obligations implied by the
granting of permissions is clearly an area where the
branching trees of consequences from our various
actions rapidly become intertwined, and some level
of conflict or inconsistency in the obligations that
result is inevitable.

5.3.2. Prohibition

RM-ODP [7] defines prohibition as “a prescrip-
tion that particular behaviour must not occur. A
prohibition is equivalent to there being an obligation
for the behaviour not to occur.”

Like a permission, a prohibition is defined by:
• an action
• a participant-role in that action
• a predicate on social behaviour
• a community-role
• an authority which imposes the prohibition

If an enterprise object has this prohibition, then,
when the predicate is true, the enterprise object
cannot play the participant-role in the action when
filling the community-role, by order of the authority.

5.3.3. Obligation

RM-ODP [7] defines obligation as “a prescription
that particular behaviour is required. An obligation
is fulfilled by the occurrence of the prescribed behav-
iour”.

Obligations are different from permissions and
prohibitions. They are generally more primitive,
because the obligation to obey the policy-making of
the community is the basis on which communities
grant permissions and impose prohibitions. Thus, a
community may create a context in which the accept-
ance of permissions, prohibitions or further obliga-
tions is itself obligatory, based on prior agreement by
the members of the community.

Obligations are not granted or imposed, but rather
are agreed as part of a joining a community (entering
into a contract).

An obligation influences the choices made by the
enterprise object in order to pursue a favourable
“future world” (i.e. a path through the tree of
possible future behaviours) consistent with the obli-
gation. Since an enterprise object will usually have
many obligations, there must be some relative
weights associated with these goals to enable the
optimal strategy to be determined, as was discussed
in 3.2. Note that it is not generally possible to deter-
mine whether a path will lead to the fulfillment of an
obligation, and so choices are often made using prob-
abilistic analysis based on possibly incomplete or
incorrect information. That is, the enterprise object
makes what it believes to be the best choice.

An enterprise object will typically have objectives
at instantiation. It is these initial objectives which
may cause the enterprise object to undertake roles in
communities in the belief that the activities of the
community will contribute to its objectives. In doing
so, the enterprise object acquires objectives and obli-
gations related to the community and its role within
it.

The weighting of different objectives and obliga-
tions is not fixed, but may vary throughout the life-
time of the enterprise object. Some actions (whether
performed by this enterprise object or others) may
have the effect of altering the weightings of these
goals.

Obligations can be expressed as:
• enabling (trigger) conditions, which makes

the obl iga t ion “ac t ive” . This may be
expressed either as:
• a predicate that holds while the obligation

is “active”, e.g. “when it is dark, you will
watch my house”

• a pair of activating and deactivating condi-
tions which toggle the obligations into
active and inactive modes, e.g. “when the
sun sets, you must start watching my
house and continue to do so until the sun
rises again”.

• satisfaction condition, which signifies the
obligation has been satisfied, e.g. “you must
pay me $10”

• violation condition, which signifies the obli-
gation is unachievable, e.g. a deadline has
passed

All of the above might be expressed in terms of
predicates on states, or the occurrence of some
behaviour.

Standing obligations can never be satisfied, so
these must be defined by a violation condition.

To achieve an objective, an enterprise object may
decide to join (or leave) a community.

6. Community

A community (as defined in Part 3) is described
by (at least):

• the behaviour of the community (can include
both physical and social behaviour)

• the roles of the community, which describe
the subset of the community behaviour
performed by the enterprise object that fills
each role. This can include both:
• a subset of the community’s physical

behaviour and its corresponding social
behaviour

• preconditions on the enterprise object that
fills the role, which can be both physical
(possessing the abilities needed to perform
the role behaviour) and social (e.g.
possessing necessary permissions to
perform the role behaviour)

• the policies that are applicable to the role,
which the enterprise object filling the role
must agree to accept

• the combination of participant-roles and
community-roles over which this community
claims authority to grant/impose policy. The
community may claim the authority in its own
right, or it may claim the authority by delega-
tion from a superior authority (e.g. an outer
community).

In filling a role in a community, the enterprise
object is obligated to accept the (direct or delegated)
authority of the community over the corresponding
participant-roles, and constrain their physical behav-
iour accordingly. This is the fundamental community
contract, from which all specific community
contracts are derived.

Communities can be nested and communities can
overlap (have one or more participants in common).
For nested communities, the inner community is
bound by the policies of the outer community. For
overlapping communities, the enterprise objects in
the intersection of the two communities are bound by
the policies of both communities.

Every community has a contract, and every
contract defines a community. In the real world,
some contracts are not usually regarded as forming a
community due to their ephemeral nature, but none-
theless there is a community, albeit short-lived, e.g.
buying at a garage sale. Indeed, communities can be
formed to carry out a single action. The definition of
enterprise action in Section 4.2 hints at the possi-
bility that an action with its participant-roles could be
refined into a community with corresponding roles.

6.1. Policy Making in Communities

In general, there are no default rules for policy-
making in communities. That is, in the absence of
either permission or prohibition, it is not defined
whether or not an enterprise object is willing (as
defined in Section 4.2) to play a participant-role. The
default rules must be specified by the community.

An enterprise object (especially one filling roles
in multiple communities) can acquire a collection of
permissions and prohibitions with overlapping scope
(e.g. pertaining to the same participant-role). A supe-
rior authority must provide a resolution mechanism
to determine whether a given collection of permis-
sions and prohibitions does or doesn’t make the
enterprise object willing to perform the participant-
role. A resolution mechanism of a delegated
authority may be constrained by the nature of its
delegation from the superior authority.

An authority is free to impose any system of reso-
lution it wishes (unless it is constrained by obliga-
tions, e.g. to an outer community). However, the
following principles are commonly applied and
underpin the legal frameworks in many countries [5]:

• lex specialis legi generali derogat - the
specific overrides the general

• lex superior legi inferiori derogat - higher
authorities overrule lower authorities

• lex posterior legi anteriori derogat - new law
overrides old law.

6.2. Why do Communities create Policy
Frameworks?

In what circumstances would a community create
a policy framework for some X? There are two
common reasons:

• The community believes that controlling X
would contribute to its objectives.

• The community is obligated (by some outer
community) to control X.

In the absence of a policy framework of an outer
community, the existence of a policy framework for
X in this community implies that X is prohibited
unless it conforms to this community’s policies. Note
that this default prohibition might not be respected
by non-members of the community, and other mech-
anisms might be needed to impose the compliance of
non-members (if so desired). For example, an envi-
ronmentally-conscious group might decide in which
circumstances members are permitted to drive their
cars. While group members may be bound by these
policies as a condition of membership of the group,
this community is unable to constrain the (ab)use of
cars by non-members through policy alone.

In the presence of a policy framework of an outer
community, the policy framework of the inner
community is bounded by the framework of the outer
community. The inner community cannot permit
what is prohibited by the outer community, unless it
has a delegated authority to do so. The inner commu-
nity may be able to prohibit or obligate its members,
provided the outer community does not prohibit the
inner community from imposing such policies. For
example, the Driving Licence Commission (DLC)
might be permitted to decide the rules for the issuing
of drivers licences (e.g. requiring some test of driving
competency), but the government might obligate the
DLC to issue drivers licences only to those appli-
cants over 18 years old. That is, the DLC cannot give
a drivers licence to a child, even if the child can pass
the DLC’s competency test.

The way that non-members of the community are
constrained will, in general, be derived from some
outer level community which does involve all the
parties concerned. Therefore, policies made by the
inner community are respected in the outer commu-
nity, only when the authority of the inner community
is obtained by delegation from the outer community.

6.3. What can be the Subject of Policy?

When a community establishes a policy frame-
work over X, there is usually the expectation that Xs
recognise the community as appropriate authority.
Therefore, the scope for establishing an effective
policy framework is limited to the enterprise objects
choosing to fill roles in the community and anything

over which they have effective control (this control
might arise through participation in other communi-
ties, or through ownership).

Policy can reference enterprise objects that don’t
meet the criteria above, but it must be made clear
which enterprise objects are actually obligated.
There is a significant difference between “The
members of this bushwalking club shall not cut down
the trees in the forest” and “Nobody shall cut down
the trees in the forest”, where the trees in the forest
are not under the control of the bushwalking club.
The first one obligates the members of the commu-
nity (this is valid); the second one obligates people
outside the community (and is not valid). A more
appropriate/realistic expression of the latter obliga-
tion would be “Members of this community will try
to prevent the cutting down of the trees in the forest”;
this puts the obligation back onto the enterprise
objects who can be constrained by the policies of this
community.

Of course, if an outer community gave the
bushwalking club the right to make policy about the
trees in the forest, then members of the outer
community would be constrained by the policies of
the bushwalking club.

In general, this concept of an outer community
needs to be brought into play whenever the problem
of conflict between the policies of autonomous
communities arises. In this way, policies can be
defined with regard to some form of community,
albeit sometimes a rather loose one. Where there is
no acknowledged outer community, it may not be
possible to resolve conflicts in a civilized way, and
disputes may be ongoing, or resolved by possession
or by force.

6.4. Enforcing Policy

A community can choose to enforce its policies
by optimistic or pessimistic means.

Pessimistic enforcement is essentially preventa-
tive and involves on-going checking. Mechanisms
are devised to ensure that the right things are done
and the wrong things are not. Real world examples
include locking a car to prevent access except by
those with keys, checking of a security pass on entry
to a building, etc. Passwords and access control lists
are used in computer systems. Note that all of these
examples are primarily concerned with preventing
the prohibited actions. It is more difficult to devise
mechanisms to force required things to happen.
However, there are some examples, e.g. an alarm
clock can be set to ensure that the person wakes up
on time. Generally pessimistic enforcement of obli-
gations tends to take the form of nagging, “You still
haven’t done X”, i.e. constant reminders of the obli-
gation.

Pessimistic enforcement tends to be used:
• when trust is low, i.e. when the community

has the belief (rightly or wrongly) that non-
compliance is rife

• when the damage potentially caused by non-
compliance is high

• when viable preventative mechanisms can be
created

• when some effective sanction can be applied
post-hoc to those who do not comply

An optimistic enforcement does not involve
preventative measures, but relies of detecting non-
compliance and reporting/correcting them. This is
widely used in real life. It tends to be used when:

• when trust is high
• when the potential damage due to non-

compliance is low
• when viable preventative mechanisms do not

exist
The availability of viable preventative mecha-

nisms has to be assessed against the objectives of the
community. In real life, cheap convenient preventa-
tive mechanisms often exist but their use is prohib-
ited by concerns about civil liberties. Or, to put it
more simply, a community must weigh up the rela-
tive risk of non-compliance against the costs of
enforcing compliance and the risks inherent in the
compliance mechanism.

One of the difficulties with pessimistic enforce-
ment is that the mechanisms might enforce policy on
a wider range of enterprise objects than the commu-
nity actually has the authority to do. For example, the
bushwalking club might build a high fence around
the forest to prevent non-members from chopping
down the trees. In the absence of any prohibition
regarding denying access to the fores t , the
bushwalking club would be contributing positively
towards their obligations by building the fence.

7. Conclusions

The Enterprise Viewpoint of RM-ODP has been
less developed than most of the other ODP view-
points (e.g. computational viewpoint). This paper
identifies a number of substantial bodies of work in
traditionally independent research areas, such as
deontic logic, agency theory, and speech act theory,
which might be usefully combined as a basis for a
normative ODP Enterprise Language. However,
much of this research is still in progress, and the
future work on the Enterprise Viewpoint must incor-
porate new advances in those disciplines.

This paper primarily addresses the relationship
between policies and communities. In particular, it
has been necessary to refine how policies can be
imposed by a community and how policies in
different communities interact. To do this, it has been
necessary to refine enterprise behaviour. The refine-
ment of enterprise behaviour reveals that traditional

computational modelling techniques can be applied
to the physical behaviour of enterprise objects, but
that enterprise behaviour has an additional dimension
of social behaviour to express how enterprise objects
can strive towards objectives, choose to undertake
obligations, and make plans correspondingly. Having
refined enterprise behaviour, policy statements
(permissions, prohibitions, and obligations) can be
associated with the roles, actions, and authorities of
communities.

The next step in this research programme is to
perform mappings from the enterprise concepts
described in this paper to specific information and
computational languages, e.g. UML [15] and
CORBA [16].

Acknowledgements

The work reported here was undertaken during a
sabbatical visit by Peter Linington to the Cooperative
Research Centre for Distributed Systems Tech-
nology. The work reported in this paper has been
funded in part by the Co-operative Research Centre
Program through the Department of Industry,
Science & Tourism of the Commonwealth Govern-
ment of Australia.

References

[1] Austin, J.L. 1962, How to do things with words,
Cambridge, Harvard University Press

[2] N. Belnap and M. Perloff, Seeing to it that: a
canonical form for agentives. Theoria, 54: 175-199,
1988.

[3] M. Brown, Doing As We Ought: Towards a Logic of
Simply Dischargeable Obligations, in Deontic
Logic, Agency and Normative Systems, eds. M.
Brown and J. Carmo, Proceedings of DEON’96, 3rd
Int. Workshop on Deontic Logic in Computer
Science, January 1996.

[4] M. Brown, Agents with Changing and Conflicting
Commitments: A Preliminary Study, In Proc. 4th Int.
Workshop on Deontic Logic in Computer Science
(DEON’98), January 1998.

[5] N. den Haan, “Investigations into the Application of
Deontic Logic” in Executable Modal and Temporal
Logics, Proc. of the IJCAI-93 Workshop, M. Fisher
and R. Owens eds, Springer, pp 157-178.

[6] J. Horty, Combining Agency with Obligation
(Preliminary Version), in Deontic Logic, Agency
and Normative Systems, eds. M. Brown and J.
Carmo, Proceedings of DEON’98, 3rd Int .
Workshop on Deontic Logic in Computer Science,
January 1996.

[7] ISO/IEC IS 10746-2. International Standard 10746-
2, ITU-T Recommendation X.902: Open Distributed
Processing - Reference Model - Part 2: Foundations,
January 1995.

[8] ISO/IEC IS 10746-3. International Standard 10746-
3, ITU-T Recommendation X.903: Open Distributed
Processing - Reference Model - Part 3: Architecture,
January 1995.

[9] ISO/IEC WD 15414. Open Distributed Processing -
Reference Model - Enterprise Viewpoint, January
1998.

[10] E. Lupu, M. Sloman, A Policy Based Role Object
Model, in Proc. 1st International Workshop on
Ente rpr i se Dis t r ibu ted Objec t Comput ing
(EDOC’97), pp 36-47, Gold Coast, Australia,
October 1997.

[11] J-J Ch Meyer, R.J. Wieringa and F.P.M Dignum, The
role of Deontic Logic in the Specification of Infor-
mation Systems, chapter 2 in “Logics for Databases
and Information Systems”, Eds J Chomicki and G
Saake, Kluwer, 1998.

[12] Z. Milosevic, A. Berry, A. Bond, K. Raymond.
Supporting Business Contracts in Open Distributed
Systems, In Proceedings of the 2nd International
Workshop on Serv ices in Dis t r ibu ted and
Networked Environments (SDNE’95), pages 60-67,
Whistler, Canada, IEEE Computer Society Press,
June 1995.

[13] Z. Milosevic, Enterprise aspects of open distributed
sys tems , Ph .D. Thes i s , The Univers i ty o f
Queensland, 1995.

[14] J.von Neumann, O. Morgenstern, Theory of Games
and Economic Behavior, Princeton: Princeton
University Press, 1944.

[15] Object Management Group, Unified Modelling
Language, OMG ad/97-08-{02-09}, August 1997.

[16] Object Management Group, CORBA/IIOP 2.2
Specification, OMG formal/98-02-01

[17] Henry Sidgewick, The Methods of Ethics, 7th Ed.
London, 1907.

[18] S. Tyndale-Biscoe, B. Wood “Machine Responsi-
bility - How to deal with it” in Proc. 1st Interna-
tional Workshop on Enterprise Distributed Object
Computing (EDOC’97), pp 36-47, Gold Coast,
Australia, October 1997.

