
May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

International Journal of Cooperative Information Systems
c© World Scientific Publishing Company

A FORMAL ANALYSIS OF A BUSINESS CONTRACT LANGUAGE

GUIDO GOVERNATORI

School of Information Technology and Electrical Engineering
The University of Queensland, Brisbane, Australia. email: guido@itee.uq.edu.au

ZORAN MILOSEVIC

Deontik, Australia. email: zoran@deontik.com

Received (15 December 2005)
Revised (28 April 2005)

This paper presents a formal system for reasoning about violations of obligations in con-
tracts. The system is based on the formalism for the representation of contrary-to-duty
obligations. These are the obligations that take place when other obligations are violated
as typically applied to penalties in contracts. The paper shows how this formalism can be
mapped onto the key policy concepts of a contract specification language, called Business
Contract Language (BCL), previously developed to express contract conditions for run
time contract monitoring. The aim of this mapping is to establish a formal underpinning
for this key subset of BCL.

Keywords: Formal Contract Language, Business Contract Language

1. Introduction

The wide penetration of broadband networks and new computing technologies
such as XML, Web Services, Service Oriented Architectures and Even-Driven-
Architectures enable better and more versatile collaborative models between enter-
prises. Examples are virtual organisations, supply chains and extended enterprise.
These cross-enterprise models require better links between partners’ business activ-
ities including more transparency of their data and processes than in the past. Such
models also require faster reaction to business events of relevance to organisations’
interactions. The business events can be either related to the occurrences associated
with the existing operational interactions, or can be triggered by the need to add or
modify the existing architecture reflecting an evolutionary character of occurrences.

These new collaboration models however give prominence to a number of prob-
lems some of which are new and some which may have been partially addressed in
the past. One such problem is the positioning of business contracts as a governance
mechanism for cross-organisational collaboration, rather than treating them as legal
documents with a weak link with the cross-organisational interactions they govern.
As a result, there is a renewed interest in contract architectures and languages as

1

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

2 G. Governatori and Z. Milosevic

the foundation for facilitating the automation of contract management activities.
This paper presents a formal system for describing contracts in terms of de-

ontic concepts such as obligations, permissions and prohibitions. Furthermore, the
logic supports reasoning about violations of obligations in contracts. The system
is based on the formalism for the representation of contrary-to-duty obligations10.
These are the obligations that take place when other obligations are violated as typ-
ically applied to penalties in contracts. We then use this formalism as a source of
the mapping to the key policy concepts of a contract specification language, called
Business Contract Language (BCL), previously developed to express contract con-
ditions of relevance for run time contract monitoring17,21. BCL is a domain specific
language, designed to support abstractions needed for the expressions of business
contracts. It was developed by taking into account several policy and community
frameworks18,15,17 and an expressive event language for the specification of event-
based behaviour as part of policy expressions. The initial research prototype for the
BCL as part of a Business Contract Architecture was developed and tested using
several contract examples17,21,20. Although BCL has its basis in these well-founded
concepts, it was also developed in an incremental manner, as we were considering
increasingly complex contract scenarios and case studies from the contract man-
agement domain.a However, this style of BCL development has led to the need
for a more formal treatment of the language and this paper is a step towards this
direction.

In the next section we introduce an example of a business contract, which will be
used to illustrate the concepts discussed throughout the paper. In Section 3 we con-
sider contracts as legal instruments and express their semantics using a logic-based
formalism for reasoning about the contrary to duty obligations10. The main idea
behind this formalism is to express contract semantics in terms of deontic modali-
ties (or normative constructs) such as obligations, permissions and prohibitions. In
addition, this formalism supports the expression of and reasoning about violations
of such deontic modalities and the subsequent actions that need to be taken to
deal with violations. This system allows for checking of contract consistency and
determining whether there are missing or implied statements. We will refer to this
formalism as formal contract language (FCL). FCL is then used to check the ex-
pressive power of relevant parts of BCL to be briefly described in section 5. BCL
fragments for an example contract are presented in section 6. In sections 7 and 8
we establish a correspondence between the semantics of FCL and the core concepts
of BCL. Section 9 provides an overview of related work. The paper concludes with
listing the main points and by outlining our future research directions in this area.

2. A Sample Contract

Consider the following sample contract, based on20 and revised in7.

aNote that the language is XML-centric, exploiting relevant XML standards, in particular Xpath,
but these are not discussed in this paper.

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

A Formal Analysis of a Business Contract Language 3

CONTRACT OF SERVICES

This Deed of Agreement is entered into as of the Effective Data identified below.

BETWEEN ABC Company (To be known as the Purchaser)

AND ISP Plus (To be known as the Supplier)
WHEREAS (Purchaser) desires to enter into an agreement to purchase from (Supplier)
Application Server (To be known as (Service) in this Agreement).

NOW IT IS HEREBY AGREED that (Supplier) and (Purchaser) shall enter into an
agreement subject to the following terms and conditions:

1 Definitions and Interpretations

1.1 Price is a reference to the currency of Australia unless otherwise stated.

1.2 This agreement is governed by Australia Law and the parties hereby agree to submit
to the jurisdiction of the Courts of the Queensland with respect to this agreement.

2 Commencement and Completion

2.1 The commencement date is scheduled as January 30, 2004.

2.2 The completion date is scheduled as January 30, 2005.

3 Price Policy

3.1 A “Premium Customer” is a customer who has spent more that $10000 in services.
Premium Customers are entitled a 5% discount on new orders.

3.2 Services marked as “special order” are subject to a 5% surcharge. Premium customers
are exempt from special order surcharge.

3.3 The 5% discount for premium customers does not apply for services in promotion.

4 Purchase Orders

4.1 The (Purchaser) shall follow the (Supplier) price lists at http://supplier/cat1.html

4.2 The (Purchaser) shall present (Supplier) with a purchase order for the provision of
(Services) within 7 days of the commencement date.

5 Service Delivery

5.1 The (Supplier) shall ensure that the (Services) are available to the (Purchaser) under
Quality of Service Agreement (http://supplier/qos1.htm). (Services) that do not con-
form to the Quality of Service Agreement shall be replaced by the (Supplier) within
3 days from the notification by the (Purchaser), otherwise the (Supplier) shall refund
the (Purchaser) and pay the (Purchaser) a penalty of $1000.

5.2 The (Supplier) shall on receipt of a purchase order for (Services) make them available
within 1 day.

5.3 If for any reason the conditions stated in 5.1 or 5.2 are not met, the (Purchaser) is
entitled to charge the (Supplier) the rate of $ 100 for each hour the (Services) are not
delivered.

6 Payment

6.1 The payment terms shall be in full upon receipt of invoice. Interest shall be charged
at 5 % on accounts not paid within 7 days of the invoice date. The prices shall be as
stated in the sales order unless otherwise agreed in writing by the (Supplier).

6.2 Payments are to be sent electronically, and are to be performed under standards and
guidelines outlined in PayPal.

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

4 G. Governatori and Z. Milosevic

7 Termination

7.1 The (Supplier) can terminate the contract after three delayed payments.

In a nutshell, the items covered within this contract are: (a) the roles of the parties;
(b) the period of the contract (the times at which the contract is in force); (c) the
nature of consideration (what is given or received), e.g., actions or items; (d) the
obligations and permissions associated with each role, expressed in terms of criteria
over the considerations, e.g., quality, quantity, cost and time; (e) some dependencies
between policies, and (f) the domain of the contract (which determines the rules
under which the validity, correctness, and enforcement of the contract will operate).

3. Formal Representation of Contracts

Business contracts are mutual agreements between two or more parties engaging
in various types of economic exchanges and transactions. They specify obligations,
permissions and prohibitions for parties involved in contact and state the actions or
penalties that may be taken when any of the stated agreements are not being met.

Narative contracts often contain ambiguities (e.g., conflicts and gaps) and these
must be avoided or at least the conflicts arising from them resolved. Furthermore,
there may be complex interdependencies between contract clauses that can be hard
to track down. In order to address these inherent complexities in many business
contracts, there is a need for different tools such as contract authoring tools, to
support verification of contracts, or tools for contract monitoring to check how
parties fulfil their policies. These tools in turn require a formal representation of
contracts. A formal foundation is thus a prerequisite for verification or validation
purposes. Consequently, one of the benefits is that we can use formal methods to
reason with and about the clauses of a contract. In particular we can

• analyse the expected behaviour of the signatories in a precise way, and
• identify and make evident the mutual relationships among various clauses in a

contract.

A formal language for contracts should be conceptual, allowing its users to focus ex-
clusively on aspects related to the content of the contract, ignoring implementation
aspects such as external or internal data representation, physical data organisation
and access, or platform related aspects such as message-passing formats.

A formal language intended to represent contracts should provide notions closely
related to the concepts of obligations, permissions, entitlements and other mutual
normative positions that the signatories of the contract subscribe to. Since the sem-
inal work by Lee16 Deontic Logic has been regarded as one on the most prominent
paradigms for the formaalisation of contracts.

3.1. Obligations, Violations and Contrary-to-Duties

Deontic Logic extends classical logic with the modal operators O, P and F . The
interpretations of the formulas OA, PA and FA are, respectively, that A is obliga-

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

A Formal Analysis of a Business Contract Language 5

tory, A is permitted and A is forbidden. The modal operators obey the usual mutual
relationships

OA ≡ ¬P¬A ¬O¬A ≡ PA O¬A ≡ FA ¬PA ≡ FA

and are closed under logical equivalence, i.e., if A ≡ B then OA ≡ OB, and satisfy
the axiom OA → PA (i.e., if A is obligatory, then A is permitted) that implies the
internal coherency of the obligations in a contracts, or, in other words, it is possible
to execute obligations without doing something that is forbidden.

The obligations in a contract, as well as the other normative positions in con-
tracts apply to the signatories of the contract. To capture this we will consider
directed deontic operators12; i.e., the deontic operators will be labelled with the
subject of deontic modality. In this perspective the intuitive reading of the expres-
sion OsA is that s has the obligation to do A, or that A is obligatory for s.

Contracts usually specify actions to be taken in case of breaches of the contract
(or part of it). These can vary from (pecuniary) penalties to the termination of
the contract itself. This type of construction, i.e., obligations in force after some
other obligations have been violated, is know in the deontic literature as contrary-
to-duty obligations (CTDs) or reparational obligations (because they are activated
when normative violations occur and are meant to ‘repair’ violations of primary
obligations3). Thus a CTD is a conditional obligation arising in response to a viola-
tion, where a violation is signalled by an unfulfilled obligation. The ability to deal
with violations or potential violations and the reparational obligation generated
from them is one of the essential requirements for reasoning about and monitoring
the implementation and performance of business contracts.

CTDs are one of the most debated field of deontic logic and, at the same time,
they are subject to several logic paradoxes. In this paper we just focus on a simple
logic of violation that seems to avoid most of these paradoxes and offers a simple
computational model to compute chains of violations. The ability do deal with vio-
lations or potential violations and the reparational obligation generated from them
is one the essential requirements for reasoning about and monitoring of business
contracts.

The idea behind the logic of violation10 is that the meaning of a clause of a
contract (or, in general a norm in a normative system) cannot be taken in isolation:
it depends on the context where the clause is embedded in (the contract). For
example a violation cannot exist without an obligation to be violated. The second
aspect we have to consider is that a contract is a finite set of explicitly given clauses
and often, some other clauses are implicit (or can be derived) from other clauses. The
ability to extract all the implicit clauses from a contract is of paramount importance
for the monitoring of it; otherwise some aspects of the contract could be missing
from the implementation of the monitoring. Accordingly, a logic of violation should
provide facilities to

(1) relate interdependent clauses of a contract and

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

6 G. Governatori and Z. Milosevic

(2) extract or generate all the clauses (implicit or explicit) of a contract.

As we have just discussed a violation cannot exist without an obligation to be vio-
lated. Thus we have a causal order among an obligation its violation and eventually
an obligation generated in response to the violation and so on. To capture this
intuition we introduce the non-boolean connective ⊗, whose interpretation is such
that OA ⊗ OB is read as “OB is the reparation of the violation of OA” (we will
refer to formulas built using ⊗ as ⊗-expressions); in other words the interpretation
of OA ⊗ OB, is that A is obligatory, but if the obligation OA is not fulfilled (i.e.,
when ¬A is the case, and consequently we have a violation of the obligation OA),
then the obligation OB is in force. The above interpretation suggests that violations
are special kinds of exceptions10, and several authors have used exceptions to raise
conditions to repair a violation in the context of contract monitoring21,11.

In the next section we lay down the foundations for FCL.

3.2. Reasoning about Violations

We now introduce the logic (FCL) we will use to reason about contracts. The lan-
guage of FCL consists of two set of atomic symbols: a numerable set of propositional
letters p, q, r, . . ., intended to represent the state variables of a contract and a nu-
merable set of event symbols α, β, γ, . . . corresponding to the relevant events in a
contract. Formulas of the logic are constructed using the deontic operators O (for
obligation), P (for permission), negation ¬ and the non-boolean connective ⊗ (for
the CTD operator). The formulas of FCL will be constructed in two steps according
to the following formation rules:

• every propositional letter is a literal;
• every event symbol is a literal;
• the negation of a literal is a literal;
• if X is a deontic operator and l is a literal then Xl and ¬Xl are modal literals.

After we have defined the notion of literal and modal literal we can use the following
set of formation rules to introduce ⊗-expressions, i.e., the formulas used to encode
chains of obligations and violations.

• every modal literal is an ⊗-expression;
• if Ol1, . . . , Oln are modal literals and ln+1 is a literal, then Ol1⊗ . . .⊗Oln and

Ol1 ⊗ . . .⊗Oln ⊗ Pln+1 are ⊗-expressions.

The formation rules for ⊗-expressions allow a permission to occur only at the end
of such expressions. This is due to the fact that a permission can be used to repair
a violation, but it is not possible to violate a permission, thus it makes no sense to
have reparations of permissions.

Each condition or policy of a contract is represented by a rule in FCL

r : A1, . . . , An $ C

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

A Formal Analysis of a Business Contract Language 7

where r is the name/id of the policy, A1, . . . , An, the antecedent of the rule, is the
set of the premises of the rule (alternatively it can be understood as the conjunction
of all the literals in it) and C is the conclusion of the rule. Each Ai is either a literal
or a modal literal and C is an ⊗-expression.

The meaning of a rule is that the normative position (obligation, permission, pro-
hibition) represented by the conclusion of the rule is in force when all the premises
of the rule hold. Thus, for example, the second part of clause 5.1 of the contract
(“the supplier shall refund the purchaser and pay a penalty of $1000 in case she
does not replace within 3 days a service that does not conform with the published
standards”) can be represented as

r : ¬p,¬α $ OSupplierβ

where the propositional letter p means “a service has been provided according to
the published standards”, α is the event symbol corresponding to the event “re-
placement occurred within 3 days”, and β is the event symbol corresponding to the
event “refund the customer and pay her the penalty”. The policy is activated, i.e.,
the supplier is obliged to refund the customer and pay her a penalty of $1000, when
the condition ¬p is true (i.e., we have a faulty service), and the event “replacement
occurred within 3 days” lapsed, i.e., its negation occurred.

The connective ⊗ permits combining primary and CTD obligations into unique
regulations. The operator ⊗ is such that ¬¬A ≡ A for any formula A and enjoys
the properties of associativity

A⊗ (B ⊗ C) ≡ (A⊗B)⊗ C,

and duplication and contraction on the right,

A⊗B ⊗A ≡ A⊗B.

The right-hand side of the equivalence above states that B is the reparation of the
violation of the obligation A. That is, B is in force when ¬A is the case. For the left-
hand side we have that, as before, a violation of A, i.e., ¬A, generates a reparational
obligation B, and then the violation of B can be repaired by A. However, this is
not possible since we already have ¬A.

Sometimes contracts contain other mutual normative positions such as delega-
tions, empowerment, rights and so. Often these positions can be effectively repre-
sented in terms of complex combinations of directed obligations and permissions6.
Hence violations of such complex positions result in violations of the consituent
obligations.

4. Normalisation tools for FCL

In this section we examine how FCL can be used to analyse contracts and to reason
about them so that ambiguities in a contract can be identified.

We introduce transformations of an FCL representation of a contract to pro-
duce a normal form of the same. A normal form is a representation of a contract

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

8 G. Governatori and Z. Milosevic

based on an FCL specification containing all contract conditions that can be gener-
ated/derived from the given FCL specification. The purpose of a normal form is to
“clean up” the FCL representation of a contract, that is to identify formal loopholes,
deadlocks and inconsistencies in it, and to make hidden conditions explicit.

In the rest of this section we introduce the procedures to generate normal forms.
First (Section 4.1) we describe a mechanism to derive new contract conditions by
merging together existing contract clauses. In particular we link an obligation and
the obligations triggered in response to violations of the obligation. Then, in Section
4.2, we examine the problem of redundancies, and we give a condition to identify
and remove redundancies from the formal specification of a contract. Finally in
Section 4.3 we consider the issue of normative conflicts in contracts. More precisely
we define when two contract clauses are mutually inconsistent and we briefly discuss
two possible alternatives to deal with such cases.

4.1. Merging Contract Conditions

One of the features of the logic of violation is to take two rules, or clauses in a
contract, and merge them into a new clause through the violation conditions. In
what follows we will first examine some common patterns of this kind of construction
and then we will show how to generalise them.

Let us consider a policy like (in what follows Γ and ∆ are sets of premises)

Γ $ OsA.

Given an obligation like this, if we have that the violation of OsA is part of the
premises of another policy, for example,

∆,¬A $ Os′C,

then the latter must be a good candidate as reparational obligation of the former.
This idea is formalised is as follows:

Γ $ OsA ∆,¬A $ Os′C

Γ,∆ $ OsA⊗Os′C

This reads as given two policies such that one is a conditional obligation (Γ $ OsA)
and the antecedent of second contains the negation of the propositional content of a
the first (∆,¬A $ Os′C), then the latter is a reparational obligation of the former.
Their reciprocal interplay makes them two related norms so that they cannot be
viewed anymore as independent obligations. Therefore we can combine them to
obtain an expression (i.e., Γ,∆ $ OsA⊗Os′C) that exhibit the explicit reparational
obligation of the second norm with respect to the first. Notice that the subjects and
beneficiaries of the primary obligation and its reparation can be different, even if
very often in contracts they are the same.

Suppose the contract includes the rules

r : Invoice $ OPurchaserPayWithin7Days
r′ : ¬PayWithin7Days $ OPurchaserPayWithInterest .

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

A Formal Analysis of a Business Contract Language 9

From these we obtain

r′′ : Invoice $ OPurchaserPayWithin7Days ⊗OPurchaserPayWithInterest .

We can also generate chains of CTDs in order to deal iteratively with violations of
reparational obligations. The following case is just an example of this process.

Γ $ OsA⊗OsB ¬A,¬B $ OsC

Γ $ OsA⊗OsB ⊗OsC

For example we can consider the situation described by Clause 5.1 of the contract.
Given the rules

r : Invoice $ OSupplierQualityOfService ⊗OSupplierReplace3days
r′ : ¬QualityOfService,¬Replace3days $ OSupplierRefund&Penalty

from which we derive the new rule
r′′ : Invoice $ OSupplierQualityOfService ⊗

OSupplierReplace3days ⊗
OSupplierRefund&Penalty .

The above patterns are just special instances of the general mechanism described
by the following inference mechanism

r : Γ $ OsA⊗ (
⊗n

i=1 OsBi)⊗OsC r′ : ∆,¬B1, . . . ,¬Bn $ XsD

r′′ : Γ,∆ $ OsA⊗ (
⊗n

i=1 OsBi)⊗XsD
(1)

where X denotes either an obligation or a permission. In this last case, we will
impose that D is a literal. Since the minor premise states that XsD is a reparation
of OsBn, i.e., the last literal in the sequence

⊗n
i=1 OsBi, we can attach XsD to

such sequence.

4.2. Removing Redundancies

Given the structure of the inference mechanism it is possible to combine rules in
slightly different ways, and in some cases the meaning of the rules resulting from
such operations is already covered by other rules in the contract. In other cases the
rules resulting from the merging operation are generalisations of the rules used to
produce them, consequently, the original rules are no longer needed in the contract.
To deal with this issue we introduce the notion of subsumption between rules.
Intuitively a rule subsumes a second rule when the behaviour of the second rule is
implied by the first rule.

We first introduce the idea with the help of some examples and then we show
how to give a formal definition of the notion of subsumption appropriate for FCL.

Let us consider the rules
r : Invoice $ OSupplierQualityOfService ⊗

OSupplierReplace3days ⊗
OSupplierRefund&Penalty ,

r′ : Invoice $ OSupplierQualityOfService ⊗
OSupplierReplace3days.

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

10 G. Governatori and Z. Milosevic

The first rule, r, subsumes the second r′. Both rules state that after the
seller has sent an invoice she has the obligation to provide goods accord-
ing to the published standards, if she violates such an obligation, then the
violation of QualityOfService can be repaired by replacing the faulty goods
within three days (OSupplierReplace3days). In other words OSupplierReplace3days
is a secondary obligation arising from the violation of the primary obli-
gation OSupplierQualityOfService. In addition r prescribes that the viola-
tion of the secondary obligation OSupplierReplace3days can be repaired by
OSupplierRefund&Penalty , i.e., the seller has to refund the buyer and in addition
she has to pay a penalty.

As we discussed in the previous paragraphs the conditions of a contract cannot
be taken in isolation as part of a contract. Consequently the whole contract deter-
mines the meaning of each single clause in it. In agreement with this holistic view of
norms we have that the normative content of r′ is included in that of r. Accordingly,
r′ does not add any new piece of information to the contract, it is redundant and
can be dispensed from the explicit formulation of the contract.

Another common case is exemplified by the rules:

r : Invoice $ OPurchaserPayWithin7Days ⊗OPurchaserPayWithInterest
r′ : Invoice,¬PayWithin7Days $ OPurchaserPayWithInterest .

The first rule says that after the seller sends the invoice the buyer has one week
to pay it, otherwise the buyer has to pay the principal plus the interest. Thus we
have the primary obligation OPurchaserPayWithin7Days, whose violation is repaired
by the secondary obligation OPurchaserPayWithInterest , while, according to the
second rule, given the same set of circumstances Invoice and ¬PayWithin7Days
we have the primary obligation OPurchaserPayWithInterest . However, the primary
obligation of r′ obtains when we have a violation of the primary obligation of r.
Thus the condition of applicability of the second rule includes that of the first rule,
which then is more general than the second and we can discard r′ from the contract.

The intuitions we have just exemplified is captured by the following definition.

Definition 4.1. Let r1 : Γ $ A ⊗ B ⊗ C and r2 : ∆ $ D be two rules, where
A =

⊗m
i=1 Ai, B =

⊗n
i=1 Bi and C =

⊗p
i=1 Ci. Then r1 subsumes r2 iff

(1) Γ = ∆ and D = A; or
(2) Γ ∪ {¬A1, . . . ,¬Am} = ∆ and D = B; or
(3) Γ ∪ {¬B1, . . . ,¬Bn} = ∆ and D = A⊗

⊗k≤p
i=0 Ci.

The intuitions is that the normative content of r2 is fully included in r1. Thus
r2 does not add anything new to the system and it can be safely discarded.

4.3. Detecting Conflicts

Conflicts often arises in contracts. What we have to determine is whether we have
genuine conflicts, i.e., the contracts is in some way flawed or whether we have prima-

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

A Formal Analysis of a Business Contract Language 11

facie conflicts. A prima-facie conflict is an apparent conflict that can be resolved
when we consider it in the context where it occurs and if we add more information
the conflict is resolved. For example let us consider the following two rules:

r : PremiumCustomer $ OsDiscount
r′ : SpecialOrder $ Os¬Discount

saying that Premium Customers are entitled to a discount (r), but there is no
discount for goods bought with a special order (r′). Is a Premium customer entitled
to a discount when she places a special order? If we only have the two rules above
there is no way to solve the conflict just using the contract and there is the need of
a domain expert to advise the knowledge engineer about what to do in such case.
The logic can only point out that there is a conflict in the contract. On the other
hand, if we have an additional provision

r′′ : PremiumCustomer ,¬Discount $ OsRebate

Specifying that if for some reasons a premium customer did not received a discount
then the customer is entitled to a rebate on the next order, then it is possible to
solve the conflict, because the contract allows a violation of rule r to be amended
by r′′, using the merging mechanism we analyse in Section 4.1.

The following rule is devised for making explicit conflicting norms (contradictory
norms) within the system:

Γ $ A ∆ $ ¬A

Γ,∆ $ ⊥ (2)

where

(1) there is no rule Γ′ $ X such that either ¬A ∈ Γ′ or X = A⊗B;
(2) there is no conditional rules ∆′ $ X such that either A ∈ ∆′ or X = ¬A⊗B;
(3) for any formula B, {B,¬B} (⊆ Γ ∪∆.

The meaning of these three conditions is that given two rule, we have a conflict if
the normative content of the two rules is opposite, such that none of them can be
repaired, and the states of affairs/preconditions they require are consistent.

Once conflicts have been detected there are several ways to deal with them.
The first thing to do is to determine whether we have a prima-facie conflict or
a genuine conflict. As we have seen we have a conflict when we have two rules
with opposite conclusions. Thus a possible way to solve the conflict is to create a
superiority relation over the rules and to use it do “defeat” the weaker rule7. A
second alternative is to supplement the antecedent of one rule with an additional
guard (this kind of technique has been proposed in a general logical setting1 to
remove priority over rules, though the precise details could depend on the underlying
logic). Notice that currently BCL does not support priority over rules/policies, thus
the guard approach could be more suitable for BCL.

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

12 G. Governatori and Z. Milosevic

4.4. FCL Normal Forms

We now apply the logical machinery presented to validate and transform business
contracts into the logical representation in a language apt to monitor the execution
of a contract. This consists of the following three steps:

(1) Starting from a formal representation of the explicit clauses of a contract we
generate all the implicit conditions that can be derived from the contract by
applying the merging mechanism of FCL.

(2) We can clean the resulting representation of the contract by throwing away all
redundant rules according to the notion of subsumption.

(3) Finally we use the conflict identification rule to label and detect conflicts.

In general the process at step 2 must be done several times in the appropriate order
as described above. The normal form of a set of rules in FCL is the fixed-point of
the above constructions. A contract contains only finitely many rules and each rule
has finitely many elements. In addition it is possible to show that the operation
on which the construction is defined is monotonic10, thus according to standard
set theory results the fixed-point exists and it is unique. However, we have to be
careful since merging first and doing subsumption afterwards produces different
results from the opposite order (i.e., subsumption first and merging after), or by
interleaving the two operations.

A domain expert can use the normal form to check that the representation of
a contract covers all aspects of the contract, and, in case of conflicts, she suggests
which interpretation is the more faithful to the intent of the contract. In addition
the domain expert can point out features included in the contract but missing in
its formal representation.

5. Business Contract Language in brief

The purpose of BCL is to specify business contracts in a way suitable to enable
monitoring of contract execution in an event-based manner. A contract execution
period starts after contract terms are agreed and the contract is signed by signatories
to the contract, and finishes at the specified point in time stated in the contract or
as a result of various other termination conditions such as contract violation. Real-
time monitoring of activities of the roles involved in business processes governed by
contracts is a key aspect of enterprise contract management. The aim is to check
whether these activities signify fulfilment policies agreed in the contract or their
existing or possibly forthcoming violations. A special case of policy violation refers
to situations in which a required activity of a role stated in a contract (directly or
indirectly) has not been carried out. This means that the monitoring also needs to
detect cases of the non-execution of activities emanating from contracts.

BCL incorporates relevant concepts from the Reference Model for Open Dis-
tributed Processing standards14 and ODP Enterprise Language standard15 and is
developed by considering a number of scenarios from business contract manage-

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

A Formal Analysis of a Business Contract Language 13

ment domain. BCL also introduces the concept of event pattern as a specific style
of expressing states of affairs of relevance for contract monitoring.

Event is the central concept in BCL and BCL can be regarded as an event-driven
language. A single event can be used to signify:

• an action of a signatory to the contract, or any other party mentioned in the
contract

• a temporal occurrence such as a deadline,
• change of state associated with a contract variable,
• contract violation and other conditions associated with contract execution.

In addition, multiple events can be combined and used to describe the execution
of more complex activities. We introduced the concept of event pattern to specify
relationships between events that are of relevance to business contracts. An event
pattern is a means for describing a state of affairs. A state of affairs can range from
the elementary, such as the occurrence of a particular action performed by a party
or the passing of a deadline, to the more complex, such as “more than three sets
of down time in any a one week period” and “one of the contract conditions has
been violated”. Examples of event relationships are logical relationships between
events (AND, OR, NOT), temporal relationships (e.g., before and after), temporal
constraints on event patterns (e.g., absolute and relative deadlines and sliding time
windows17), event causality, and some special kinds of singleton event pattern (e.g.,
contract violation and state change events). We note that the event pattern concept
has many similarities to the work by Luckham on complex event processing19.

The main use of event patterns in BCL is to enable checking of policies related
to a contract. Policies define behavioural constraints for the roles that carry out
activities in a contract and these constraints are described in terms of event pat-
terns. Policy checking consists of identifying event patterns in activities of parties
filling a role and establishing whether they satisfy the policies. The policies take a
form of modal constraints such as obligations, permissions and prohibitions. These
modal constraints in a contract specification reflect their English-language meaning:
obligations identify activities that must occur, permissions identify activities that
may occur, and prohibitions identify activities that must not occur. In all cases,
these constraints can be conditional, for example, if payment is not made then the
supplier is permitted to charge interest on the outstanding amount. We note that
there may be other business rules that state various constraints on a contract and
do not have explicitly modal character, such as the start and end date of a contract
and these are easier to incorporate as part of contract monitoring. Policies represent
a key constituent of a business contract specifications. A contract is described as a
set of policies that apply to the behaviour of signatories and various other parties
filling roles involved in business processes governed by contracts.

As a result of policy checking procedures a policy violation may be detected. In
BCL, we represent the occurrence of such violation using a special kind of event
type, namely PolicyViolation event. If it occurs, this event can then be treated like

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

14 G. Governatori and Z. Milosevic

any other event and can be used as part of other event patterns for various purposes.
One specific purpose is to use this event to link the violating policy with another
policy that can take effect in response to this violation, referred to as CTD or
reparation policy earlier. This is the mechanism used in BCL for the expression of
(possibly a chain of) reparation policies. In this case, a BCL guard can be used
as a precondition for the activation of this reparation policy. After this policy is
activated the same monitoring machinery can be applied to check the fulfilment of
this new policy. There is no limit of how many policies can be chained using this
approach.

Contract related events can often change the state of various variables associated
with the contract. To this end, BCL defines the concept of a state for that contract
variable and the value of this state can be either determined explicitly in response
to an event, or on request, when the state value is needed. Typically, a contract has
many state variables changing in response to the corresponding events.

BCL introduces the concept of a community, an overarching concept for the
specification of objects that collaborate to achieve a certain goal. These objects fill
the roles of a community. Thus, a community is defined as a set of roles, policies that
apply to the relevant roles, states, and related event patterns that apply to the com-
munity. We note that community is a general concept for describing collaboration
and can be used to model structure within one organisation or cross-organisational
structures. Business contracts are a specific kind of community.

6. BCL Fragments

We illustrate the use of BCL through the example of a contract for services from
section 2 with fragments of language expressions introduced progressively and dis-
cussed alongside these fragments. We provide a substantial simplification of BCL
syntax to illustrate the BCL concepts and their usage and use only those attribute
of BCL concepts which are of relevance for the example. Note that BCL is XML-
centric, exploiting relevant XML standards, in particular XPath, but these details
are omitted from this paper. The BCL fragments are contract-oriented constraints
over the purchasing process.

Role A BCL Role is used as a label for a party whose behaviour is constrained by
policies stated in a contract. BCL roles are names, with the expected behaviour of
parties filling roles defined in the containing Policy specification. Policy specification
in turn includes EventPattern definitions associated with a specific Role name. The
syntax for role identification is as follows:

Role: Purchaser

Note that BCL roles have cardinality, that is, more than one party in a contract
can fulfil a role.

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

A Formal Analysis of a Business Contract Language 15

Event Pattern As discussed previously in section 5, event patterns are a key
component in checking policies related to a contract. Policy checking consists of
identifying event patterns in activities of parties filling a role and ensuring that
they satisfy the policies. Events are matched with an event pattern by event type.

Event typeId=PurchaseOrder
Defined by XMLSchema
for UBL Order

This specifies that a purchase order event is signified by the existence of an XML
document using the UBL Order XML schema. Note that event matching can exploit
some further information such as event parameters from the event content, e.g. the
amount specified in the Purchase Order document included as an event’s payload.

Events in BCL can involve multiple EventRoles. The EventRole concept is a generic
labelling mechanism for identifying roles in event execution that can be played by
participants. An event with multiple roles is specified as follows:

Event typeId=PurchaseOrder
EventRole name=Buyer
EventRole name=Seller

The BCL event roles are different from contract roles: by using generic event role
names, the same event definition can be re-used in many contexts. The BCL event
roles can then be bound to specific contract roles as shown by the mapping for our
example as follows (to illustrate the point we only include the name attributes of
the RoleType and EventRole elements):

Event typeId=PurchaseOrder
EventRole name=GenericBuyer
RoleType name=Purchaser

EventRole name=GenericSeller
RoleType name=Supplier

This applies to all purchase orders in the community template, meaning that the
event pattern will only be matched if the Purchaser fills the GenericBuyer event role
and the Supplier fills the GenericSeller role.

State The BCL State construct is used to define data values shared by the partici-
pants in the Community . This is used to maintain running totals, counters and other
state required to evaluate policy. Such a state defines a set of update actions and
is introduced with the following syntax:

State: GoodsPurchasedAmount
CalculationExpression
UpdateOn: Payment
UpdateSpecification: return this + Payment.Amount

This defines the amount spent by the Purchaser , which is updated whenever a pay-
ment is made. State changes are bound to event patterns and are deterministic.

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

16 G. Governatori and Z. Milosevic

That is, the value of a state can only be modified through the matching of visible
event patterns. While such state is relatively easy to maintain consistently in an
environment with centralised control, maintaining state in a distributed context is
considerably more difficult2.

Policy A Policy is used to specify business-level constraints in a BCL Community17.
It is explicitly associated with a Role and has a Modality indicating whether it is an
obligation, permission or prohibition, described in detail below.

The behaviour associated with a policy is a conditional expression over events
expressed as an event pattern. This expression states a normative constraint that
applies to the role in question, for example, the obligation of the supplier to make
sure the goods are available within one day of receipt of a purchase order issued
by the purchaser. Thus the event pattern specifies all the events that constitute a
normative constraint, including those that effectively trigger this policy, and that
may originate from an external source, such as another party or timeout event.
Although the event pattern is sufficient to express behavioural constraint in the
policy, it may be useful for a policy specifier, to extract triggering information
from the behavioural condition expression, i.e., from the event pattern. We refer
to that part of a behaviour expression as a trigger. So, in our example, the trigger
is PurchaseOrder . In some cases, policy can become active as soon as the system
that implements the policy is activated. In this case trigger corresponds to the
SystemStart.

Obligation A BCL Policy of an Obligation modality indicates that the event pattern
defined in the policy must occur. An obligation is specified as follows:

Policy: MakeGoodsAvailable
Role: Supplier
Modality: Obligation
Trigger: PurchaseOrder
Behaviour: GoodsAvailable.date before (PurchaseOrder.date + 1)

The policy specifies the goods availability behaviour condition (clause 5.2 in the
example contract) as an event pattern. In this case the event pattern is satisfied if
the GoodsAvailable event generated by the Supplier (or their agent) is at most one
day after the PurchaseOrder event was received. This matching is done by checking
the date parameters of both events. The satisfaction of event patterns means that
this obligation policy is satisfied. Notice that this policy specifies obligation on the
supplier and it is silent about policies that may apply to other roles. For example,
the policy does not say anything about the origins of the PurchaseOrder event and
policies that might apply to the party that generates this event. Thus, the triggering
condition for this policy is occurrence of PurchaseOrder event.

Note that a GoodsAvailable event signifies availability of goods which may be
manually or automatically entered into the system and a PurchaseOrder event sig-

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

A Formal Analysis of a Business Contract Language 17

nifies, for example, that a message carrying a PurchaseOrder document has arrived.
These events can be generated using any delivery mechanism such as email, SMS
message etc.

The definition of monitoring for this obligation is made easier by the explicit
specification of a time period in the policy. If the obligation is not satisfied in the
time period, then a violation event will be generated.

Permission A BCL Policy of a Permission modality indicates that the behaviour
defined in the policy is allowed to occur. For example:

Policy: ChargingPolicy
Role: Supplier
Modality: Permission
Trigger: SystemStart
Behaviour: InvoiceSend after GoodsAvailable

The policy specifies that the Supplier is permitted to send an invoice after it made
goods available. Note that the example contract does not explicitly state this policy,
but we imply it from the natural language interpretation of the contract.

Prohibition A BCL Policy of a Prohibition modality indicates that the behaviour
defined in the policy must not occur, for example:

Policy: PurchaserSpecialOrderCondition
Role: Purchaser
Modality: Prohibition
Trigger: PurchaseOrder
Behaviour: PurchaseOrder.PurchaserAge less LegalAge

This policy specifies that Purchasers below legal age are prohibited from purchasing
“special orders”.

Violations BCL supports expression of guarded conditions that can be applied
to the BCL event pattern and a number of language elements that contain event
patterns such as policies, state updates, and notification generation. In general
the BCL guard specifies the precondition for the evaluation of the corresponding
element. For example, the guard can be used to specify when a policy is to be
applied such as in the example below:

Policy: MaintenanceSupplierIT
Role: Supplier
Modality: Prohibition
Trigger: SystemStart
Guard: on weekday
Behaviour: ITMaintenance

Note that in this case the guard effectively ‘triggers’ the policy as this policy is in
force at all times during this system life-time.

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

18 G. Governatori and Z. Milosevic

This states that the policy will be active for the monitoring purpose only on
weekdays (i.e., when its guard condition is true).

One specific use of guards can be to specify conditions for the activation of repa-
rations of CTD policies as discussed in previous section. For example, the following
policy expresses the condition in the first sentence of Clause 5.1 of the example
contract. Note that for simplicity we do not elaborate on the exact meaning of the
QualityOfServiceAgreement condition below.

Policy: QualityOfServicePolicy
Role: Supplier
Modality: Obligation
Trigger: SystemStart
Behaviour: QualityOfServiceAgreement at http://suplier/qos1.htm

When a service does not satisfy this condition a violation event
(QualityOfServicePolicyViolated) will be generated indicating that this obligation is
violated. This event can then be used in an expression of a guard for a policy that
applies under these circumstances, namely:

Policy: Replace3daysPolicy
Role: Supplier
Modality: Obligation
Guard: HasOccurred QualityOfServicePolicyViolated
Behaviour: Replace.date before Now + 3 days

This new policy will be activated for the monitoring when QualityOfServicePolicyVi-

olated guard was true, i.e., when the violation event of QualityOfServicePolicy was
detected. For the detection of this event we use the HasOcurred event pattern ex-
pression where the QualityOfServicePolicyViolated event is an input parameter and the
result is Boolean. From that point in time the Replace3daysPolicy will need to be
monitored to establish whether Supplier has fulfilled its CTD obligation, whether
the Replace event ocurred within 3 days of obligation violation.

7. Mapping FCL to BCL

In this section we present a mapping from the FCL to BCL, with the aim of de-
termining whether BCL supports key concepts of FCL. First we will extend the
language of FCL with a set of rule labels. Those labels will be used to uniquely
identify the clauses of a contract.

The mapping of a formal contract C from FCL to BCL is determined by a func-
tion map that parses each rule ri in C and return an expression in BCL, according
to the format of the elements in ri. Given a rule

ri : Ai
1, . . . A

i
n $ Bi

where, ri is the id of the rule, Ai
js are either modal literals or literals and Bi is an

⊗-expression, we use Ant(r) to denote the set of literals in the antecedent of the

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

A Formal Analysis of a Business Contract Language 19

rule and Con(r) to denote the consequent of the rule. Thus given rule ri, we have

Ant(ri) = {Ai
1, . . . , A

i
n}, Con(ri) = Bi

A modal literal carries three types of information: the modality (obligation,
permission, prohibition), the subject or bearer of the modality, and the expected
behaviour. For example the modal literal ObuyerPayWithin7days indicates that the
buyer, has the obligation to pay for a service within seven days. Here the modality
is O (an obligation), the buyer is the subject of the obligation, and PayWithin7days
is the expected behaviour of the subject of the obligation. To map a modal literal
into BCL, we have to define functions to extract these pieces of information from
FCL. We assume fixed but arbitrary bijections from the set of events symbols and
propositional letters in FCL to event patterns and states in BCL, and from subjects
of modalities in FCL to roles in the community of BCL corresponding to the contract
C. Thus we have that given a modal literal MsA, role(MsA) returns the role in
BCL corresponding to the subject s, behaviour(msA) returns the event or state
corresponding to the literal A, and modality(MsA) returns Obligation if M = O,
Permission if M = P and Prohibition if M = F .

The antecedent of a rule is a set of literals and modal literals, and in FCL a literal
can be either an event symbol or a propositional letter. In FCL both propositional
letters and event symbols have the same logical status. However, this distinction
is important for contract monitoring (see the discussion in the section where we
present the elements of BCL). Therefore when we map them from FCL to BCL we
must be able to distinguish these and to use them in the appropriate ways. To this
end we introduce two functions, parseEvents and parseStates that take as input
a set S of literals and return the set of events corresponding to the event symbols
in S and the states corresponding to the propositional letters in S. If S does not
contain any event symbols parseEvents returns the special event SystemStart.

The mapping from FCL to BCL is done by a function map that takes as input a
rule in FCL and it returns a policy in BCL. When a rule specifies a CTD (i.e., the
consequent of the rule is an ⊗-expression) then map, besides returning the policy
corresponding to the primary obligation, will additionally call an auxiliary function
vmap (for violation map).

The function map(ri) is thus defined as:
If Bi = MsCi for some modality Ms and (modal) literal Ci (i.e., Bi is a modal

literal) then map(ri) generates the following policy:

Policy: id=ri

Role: role(Con(ri))
Modality: modality(Con(ri))

Trigger: parseEvents(Ant(ri))
Guard: parseStates(Ant(ri))
Behaviour: behaviour(Con(ri))

otherwise, when there is a reparation of an obligation involved, namely when

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

20 G. Governatori and Z. Milosevic

Bi = OrCi ⊗ Di (i.e., Bi is an ⊗-expression), map(ri) generates the following
BCL policies:

Policy: id=ri

Role: role(Con(ri))
Modality: Obligation

Trigger: parseEvents(Ant(ri))
Guard: parseStates(Ant(ri))
Behaviour: behaviour(Con(ri))

vmap(Di, ri, 0)

The function vmap generates a policy corresponding to the violation of the policy
where the call to the function occurs.

The function vmap(Bi, ri, n) takes as input a deontic formula Bi, a rule ri,
and an integer n. n essentially gives the level at which the violation occurs, and
it will be used to determine the id of the policy corresponding to the reparation
of the violation. As for the function map, the definition of vmap depends on the
format of its first parameter. If Bi = MrCi then, the BCL policy corresponding to
vmap(Bi, ri, n) is

Policy: id=ri.n
Role: role(Con(ri))
Modality: modality(Con(ri))

Trigger: SystemStart
Guard: HasOccured riViolated
Behaviour: behaviour(Con(ri))

otherwise (i.e., Bi = OrCi ⊗Di) vmap produces the following BCL expression

Policy: id=ri.n
Role: role(Con(ri))
Modality: Obligation

Trigger: SystemStart
Guard: HasOccured riViolated
Behaviour: behaviour(Con(ri))

vmap(Di, ri, n + 1)

We illustrate the mapping with the help of some examples. Let us consider the
rule corresponding to Clause 7.1 of the contract (“The supplier can terminate the
contract after 3 delayed payments”).

7.1 : 2Delays,¬PayWithin7Days $ PSupplierTerminate

Where 2Delays is a propositional letter and PayWithin7days is an event symbol.
The element of the rule are:

Ant(7.1) = {2Delays,¬PayWithin7Days}
Con(7.1) = PSupplierTerminate

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

A Formal Analysis of a Business Contract Language 21

Here Con(7.1) is a modal literal, therefore we can use the first part of the the
definition of map. Moreover

role(PSupplierTerminate) = Supplier
modality(PSupplierTerminate) = Permission

behaviour(PSupplierTerminate) = Terminate.

For the antecedent of the rule we have

parseEvents(Ant(7.1)) = ¬PayWithin7Days
parseStates(Ant(7.1)) = 2Delays.

Therefore the mapping of rule 7.1 gives us the following policy in BCL

Policy: id=7.1
Role: Supplier
Modality: Permission

Trigger: not PayWithin7Days
Guard: 2Delays
Behaviour: Terminate

In the second example we have a case where we have to use vmap. Consider the
rule corresponding to the first part of Clause 6.1 of the contract.

6.1 : Invoice $ OPurchaserPayWithin7Days ⊗OPurchaserPayWithInterest .

The elements of the rule are

Ant(6.1) = {Invoice}
Con(6.1) = OPurchaserPayWithin7Days ⊗OPurchaserPayWithInterest

Since Con(6.1) is an ⊗-expression we have to use the second part of the definition
of map, from which we obtain

Policy: id=6.1
Role: Purchaser
Modality: Obligation

Trigger: Invoice
Behaviour: PayWithin7Days

vmap(OPurchaserPayWithInterest , 6.1, 0)

At this stage we have to evaluate

vmap(OPurchaserPayWithInterest , 6.1, 0).

Since the first argument of the vmap is a modal literal we can use the first part of
the definition. This yields the following BCL policy

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

22 G. Governatori and Z. Milosevic

Policy: id=6.1.0
Role: Purchaser
Modality: Obligation

Trigger: SystemStart
Guard: HasOccured 6.1 Violated
Behaviour: PayWithInterest

The analysis above demonstrates that all the current FCL concepts can be mapped
to corresponding parts of BCL, in particular the policy aspects of BCL. The FCL
connective operator ⊗ introduced in Section 3.1 provides a formal foundation for
expressing primary obligations and violation conditions, and their ensuing policies
in a recursive way.

In terms of BCL, we have shown that a combination of BCL guards and a special
kind of event, namely PolicyViolation event, can be used to implement the semantics
of the FCL connective operator. The occurrence of PolicyViolation can be used to
set to true the guard condition that applies to the reparation policy. Similarly to
FCL, it is possible to specify a chain of reparation policies. This capability further
illustrate the expressive power of BCL.

8. Mapping BCL to FCL

In this section we will provide a mapping from BCL to FCL that allows us to
apply the formal validation and verification procedure to a given BCL program.
However we will restrict ourselves to the mapping of only the policy fragment of
BCL. The proposed mapping can be integrated with the mapping from FCL to BCL
presented in the previous section to analyse a fragment of a BCL program using
formal methods and to return a normalised BCL program for a contract.

We will assume a mapping that extracts the elements of a BCL policy fragment
and maps them to basic components of FCL (literals, rules labels, and modal op-
erators). Thus for example the auxiliary function behaviour(p) takes a policy p,
extracts the behaviour of the policy and returns the FCL literals corresponding to
the behaviour of the policy. Similarly for the functions name, trigger, role and
state.

The mapping pmap of a BCL policyb

Policy: pId
Role: roleId
Modality: Obligation|Permission|Prohibition
Trigger: eventPatterns
Guard: [state]|[HasOccured pId ′ Violated]
Behaviour: eventPattern

to a FCL rule is defined as follows:

bThe following policy is a schema of policy. The guard can be either a set of states state or a state
signalling that policy pId ′ has been violated, HasOccured pId ′ Violated .

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

A Formal Analysis of a Business Contract Language 23

If the policy does not contain HasOccurred pId’ Violated then

pmap(pId) = name(pId) : trigger(pId), states(pId) $ Xrole(pId)behaviour(pId)

where X is O if Modality: Obligation, P if Modality: Permission and O¬ if Modality:

Prohibition. Otherwise the mapping is

pmap(pId) = name(pId) : trigger(pId), states(pId),¬behaviour(pId′)
$ Xrole(pId)behaviour(pId)

Let us illustrate the above procedure with two examples
Given the following BCL policy:

Policy: id=7.1
Role: Supplier
Modality: Permission

Trigger: not PayWithin7Days
Guard: 2Delays
Behaviour: Terminate

Since no HasOccurred pId’ Violated guard occurs in the policy we can use the first
part of the mapping to obtain the FCL rule

7.1 : 2Delays,¬PayWithin7Days $ PSupplierTerminate

On the other hand if we want to map the policy

Policy: id=6.1.0
Role: Purchaser
Modality: Obligation

Trigger: SystemStart
Guard: HasOccurred 6.1 Violated
Behaviour: PayWithInterest

we have to use the second condition of the mapping yielding the FCL rulec

6.1 : ¬PayWithin7Days $ OPurchaserPayWithInterest .

The above two transformations allow us to map a BCL version of the contract
to a correpsonding FCL version and then to obtain the normal form of the con-
tract. After this step we can use the FCL to BCL mapping to transform back the
FCL normal form into a consolidated BCL version ready to be used for contract
monitoring.

9. Related Work

Other contract languages have been proposed recently, most notably the Contract
Expression Language4, Web Services Level Agreements13 and ecXML5. BCL has a
number of similarities with these. For example, regarding the event-oriented style

cThe SystemStart event is mapped to an empty literal in FCL.

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

24 G. Governatori and Z. Milosevic

of the specification, it has similarities with ecXML and regarding its deontic foun-
dation, it has similarities with ecXML, CEL and WSLA. However, BCL covers
broader aspects, including the organisational context for the definition of policies,
behaviour and structure and relationships between these concepts. In terms of the
logical approach of the FCL presented in this paper, this work has similarity with
the early work of Lee16, who proposed the use of deontic formalism for the speci-
fication of contracts. However, to the best of our knowledge the work presented in
this paper is unique in that we apply a recently developed logic of violation10 to
specify aspects of contracts that deal with violations. Grosof11 considers the mon-
itoring of contracts and includes the treatment of violations, but it does not use
deontic modalities. Thus there is not a full correspondence between the proposed
logic and the domain to be modelled by it, thus the treatment of violations must
be hard-coded in the definitions of the rules and policies instead of in the logic to
reason about them.

10. Discussion and Future Work

In this paper we presented a formal system for the representation of contracts includ-
ing the representation and reasoning about violations of obligations in contracts.
We use this system to provide a logic-based foundation for the policy aspects of
the domain specific language, BCL, which was developed to support business con-
tract specification for contract monitoring purposes. The paper also shows how
to transform BCL into FCL to provide formal validation and verification of BCL
specifications.

Our investigation of BCL has found high level of its expressiveness for this
purpose. The BCL expressions of obligations, permissions and prohibitions are suf-
ficient to express most of the deontic concepts addressed by the FCL. In addition,
BCL provides a good solution for the expression of violations and the corresponding
reparations or CTD obligations. This solution is based on the use of the concept of
a guard as a predicate for determining when the dependent, e.g., reparation policies
should be activated. This predicate in turn is expressed as a special kind of event
pattern expression that allows detection of a specific kind of event type, the policy
violation event type. Note that in our implementation of a contract management
system this event type is generated by a business policy monitoring component at
a point in time when the policy’s enclosing event pattern has been found to be
violated.

One can perhaps attribute this expressiveness of BCL to the precise enterprise
modelling framework used as a starting for formulating BCL concepts. This was
then augmented with the incremental development of the language, based on in-
creasingly complex contract scenarios collected from various interaction patterns
such as e-procurement and industry domains such as finance and insurance. This
in turn suggested a need for a well structured language to reflect the separation
of main concerns such as separate structuring into community, policy, state and

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

A Formal Analysis of a Business Contract Language 25

event pattern sub-models. The language is augmented with the use of events as
central point for integrating these sub-models. This design solution enables further
evolution of the language as more scenarios are gathered.

We have also identified several aspects of BCL that need further consideration
and which we plan to study in future. One particular issue is whether, and if so how,
the current BCL expression of policy should be structured to better support policy
specifiers in distinguishing the triggering conditions from the policy behaviour con-
ditions. In other words, we need to investigate whether the current compact policy
expression of BCL, which consists of both the triggering events for the activation of
policy and the events that directly refer to the actions of roles to which the policy
applies, needs to be separated into the respective components.

Another issue that needs further investigation is whether there needs to be
a better separation between subject and target roles in a policy expression. BCL’s
construct of event role parameters in the event specification provides a good starting
point, but this needs more detailed exploration.

We also plan to study how policy conflicts and priorities could be supported in
both FCL and BCL. We believe that an approach where BCL is combined with an
efficient non-monotonic formalism (Defeasible Logic) specifically designed to reason
in presence conflict via priorities7 can prove beneficial for the monitoring of contracts
and can lead to further development of BCL.

Finally, there are other normative concepts such as the notions of right, delega-
tion, and authorisation against which it would be useful to test the expressiveness
of BCL and we also plan to investigate this in future.

Acknowledgements

The paper is an extended and revised version of the papers presented at EDOC20059

and CoALa20058.
We would like to thank Peter Linington and Antonino Rotolo for their fruitful

comments on previous versions of this work. Thanks are also due to the all the
anonymous referees who reviewed this paper for their valuable criticisms.

The first author was supported by the Australia Research Council under Dis-
covery Project No. DP0558854 on “A Formal Approach to Resource Allocation in
Service Oriented Marketplaces”.

References

1. Grigoris Antoniou, David Billington, Guido Governatori, and Michael J. Maher. Rep-
resentation results for defeasible logic. ACM Transactions on Computational Logic,
2(2):255–287, 2001.

2. Andrew Berry and Zoran Milosevic. Extending choreography with business contract
constraints. International Journal of Cooperative Information Systems, 14(2-3):131–
179, 2005.

3. José Carmo and Andrew J.I. Jones. Deontic logic and contrary to duties. In D.M. Gab-

http://eprint.uq.edu.au/archive/00002222/01/tocl.pdf
http://eprint.uq.edu.au/archive/00002222/01/tocl.pdf

May 1, 2006 6:7 WSPC/INSTRUCTION FILE GovMil

26 G. Governatori and Z. Milosevic

bay and F. Guenther, editors, Handbook of Philosophical Logic. 2nd Edition, volume 8,
pages 265–343. Kluwer, Dordrecht, 2002.

4. Content Reference Forum. Contract Expression Language (CEL) –an UN/CEFACT
BCF compliant technology, January 21 2004.

5. Andrew D.H. Farrell, Marek J. Sergot, Mathias Sallé, and Claudio Bartolini. Perfor-
mance monitoring of service-level agreements for utility computing using the event
calculus. In 1st IEEE Workshop on Econtracting (WEC04), pages 17–24, July 2004.

6. Jonathan Gelati, Guido Governatori, Antonino Rotolo, and Giovanni Sartor. Norma-
tive autonomy and normative co-ordination: Declarative power, representation, and
mandate. Artificial Intelligence and Law, 12(1-2):53–81, March 2004.

7. Guido Governatori. Representing business contracts in RuleML. International Journal
of Cooperative Information Systems, 14(2-3):181–216, June-September 2005.

8. Guido Governatori and Zoran Milosevic. An approach for validating bcl contract spec-
ifications. In Claudio Bartolini, Guido Governatori, and Zoran Milosevic, editors, 2nd
EDOC Workshop on Contract Architectures and Languages (CoALA 2005), 2005.

9. Guido Governatori and Zoran Milosevic. Dealing with contract violations: formal-
ism and domain specific language. In 9th International Enterprise Distributed Object
Computing Conference (EDOC 2005). IEEE Computer Society, 2005.

10. Guido Governatori and Antonino Rotolo. Logic of violations: A Gentzen system for
reasoning with contrary-to-duty obligations. Australasian Journal of Logic, 4:193–215,
2006.

11. Benjamin N. Grosof and Terrence C. Poon. SweetDeal: representing agent contracts
with exceptions using XML rules, ontologies, and process descriptions. In 12th Inter-
national Conference on World Wide Web, pages 340–349. ACM Press, 2003.

12. Henning Herrestad and Christen Krogh. Obligations directed from bearers to counter-
parts. In 5th International Conference on Artificial Intelligence and Law (ICAIL’95,
pages 210–218. ACM Press, 1995.

13. IBM. Web service level agreements, Accessed 31 March 2004.
14. ISO/IEC 10746-1 10756-2 10746-3 10746-4. Basic reference model for open distributed

processing.
15. ISO/IEC IS-15415. Open distributed processing-enterprise language, 2002.
16. Ronald M. Lee. A logic model for electronic contracting. Decision Support Systems,

4:27–44, 1988.
17. Peter F. Linington, Zoran Milosevic, James B. Cole, Simon Gibson, Sachin Kulkarni,

and Stephen Neal. A unified behavioural model and a contract language for extended
enterprise. Data & Knowledge Engineering, 51(1):5–29, 2004.

18. Peter F. Linington, Zoran Milosevic, and Kerry Raymond. Policies in communities:
Extending the odp enterprise viewpoint. In 2nd International Enterprise Distributed
Object Computing Workshop (EDOC98), La Jolla, November 1998.

19. David Luckham. The Power of Events. Addison-Wesley, 2002.
20. Zoran Milosevic and R. Geoff Dromey. On expressing and monitoring behaviour in

contracts. In 6th International Enterprise Distributed Object Computing Conference
(EDOC 2002), pages 3–14. IEEE Computer Society, 2002.

21. Zoran Milosevic, Simon Gibson, Peter F. Linington, James B. Cole, and Sachin Kulka-
rni. On design and implementation of a contract monitoring facility. In 1st IEEE
Workshop on Econtracting (WEC04), pages 62–70. IEEE Computer Society, July
2004.

http://eprint.uq.edu.au/archive/00002229/01/GeGoRoSa04.pdf
http://eprint.uq.edu.au/archive/00002229/01/GeGoRoSa04.pdf
http://eprint.uq.edu.au/archive/00002229/01/GeGoRoSa04.pdf
http://eprint.uq.edu.au/archive/00002225/01/coala.pdf
http://eprint.uq.edu.au/archive/00002671/01/coala2005.pdf
http://eprint.uq.edu.au/archive/00002671/01/coala2005.pdf
http://eprint.uq.edu.au/archive/00002472/01/bcl.pdf
http://eprint.uq.edu.au/archive/00002472/01/bcl.pdf
http://eprint.uq.edu.au/archive/00002629/01/main.pdf
http://eprint.uq.edu.au/archive/00002629/01/main.pdf

