
Processes, Roles, and Events:
UML Concepts for Enterpr ise Archi tecture

Alistair Barros, Keith Duddy, Michael Lawley,
Zoran Milosevic, Kerry Raymond, Andrew Wood

CRC for Enterprise Distributed Systems Technology (DSTC)
University of Queensland, Brisbane, Queensland 4072, Australia

{abarros, dud, lawley, zoran, kerry, woody}@dstc.edu.au

Abstract. This paper presents an integrated approach for modelling enterprise
architectures using UML. To satisfy a need for a wide range of modelling choices, we
provide a rich set of process-based and role-based modelling concepts, together with
a flexible way of associating business events with business processes and roles. Our
approach enriches Unified Modelling Language (UML) to support the requirements
of enterprise distributed object computing (EDOC) systems and is currently being
considered by the Object Management Group (OMG) for standardisation.

1 Introduction

As the maturing distributed object and component technology becomes more widely
deployed in enterprises, there is an increasing demand for a set of tools and methodol-
ogies to support forward and reverse engineering of enterprise computing systems.
These tools and methodologies are needed to:i) facilitate the building of enterprise
computing systems that closely follow the structure, dynamics and policies of enterpris-
es, andii) allow for faster modifications of enterprise computing systems according to
changing requirements of businesses. Such tools and methodologies need to support the
use of object-oriented approaches across the analysis, design, implementation and de-
ployment stages of enterprise distributed computing systems life cycle.

This paper focuses on providing a better support for the analysis phase in the life cy-
cle of enterprise distributed computing systems. Our approach is based on the introduc-
tion of modelling concepts that represent dynamic, structural and policy aspects of en-
terprises. We provide support for enterprise concepts such as business process, business
roles, business entities, and business events. We allow for flexible integration of these
to closely model the operations of enterprises.

The goals for our work are to provide:

• a small but powerful set of enterprise modelling concepts

• an expressive graphical notation

• a basis for automatic generation of component-based enterprise systems (e.g. us-
ing CCM [1], EJB [2], COM [3]).

The application of modelling at the enterprise level is not new when one surveys the
work done in requirements engineering [4], integrated CASE [5] and business process
(workflow) automation [6]. However, there is a need for a more generic and integrated
approach (e.g. process and policy versus procurement and service level agreement) with
a broader technology target (inclusive of workflow management systems). Our imme-
diate focus at present is on applying this approach to extend the modelling capability of

UML [7] and is in part influenced by the recent OMG Request for Proposal (RFP) for
Enterprise Distributed Object Computing (EDOC) [8]. Therefore, in this paper we will
demonstrate how our approach for modelling EDOC systems can be related to the ex-
isting version of Unified Modelling Language (UML).

The content of this paper is structured as follows. Section 2 motivates the paper by
presenting key modelling concepts used in our EDOC modelling approach. Sections 3,
4, and 5 give an overview of our models for business processes, business entities, and
business events. Section 6 concludes and outlines our future work plans.

Note that the full specification of our EDOC models is given in our EDOC submis-
sion to the OMG [9]. The full specification provides a UML model showing the rela-
tionship between all the concepts, and a detailed description of the rules and semantics
applicable to each concept. It also provides a full description of the graphical notation,
and presents a substantive example based on the work of a conference programme com-
mittee. Mappings of our EDOC models to various CORBA technologies are also pre-
sented to illustrate the generic nature of our proposal. We expect our EDOC models will
continue to evolve as part of the OMG adoption process, including harmonisation with
other parallel developments within the OMG’s Analysis and Design Task Force, e.g.
the forthcoming UML v2.0.

2 Key EDOC Concepts and relation to UML

This section introduces key models we use to describe various aspects of Enterprise
Distributed Object Computing (EDOC) systems. These models provide direct support
for business processes, business roles, business entities, and business events and are
well suited to extend UML to meet EDOC requirements, as specified in [8].

In fact, in deriving these models, our starting point was an analysis of how the EDOC
requirements stated in this RFP can be met using the existing UML modelling concepts.
Because UML is a general modelling language, there are many UML concepts that can
be used to support the modelling of EDOC systems. However, we have also found that:

• many of the concepts are dispersed across different UML views and it is not easy
to establish relationships between them

• there is a need for further extensions and refinement of the existing concepts to
better meetenterprise requirements; this will further augment the richness of the
UML in terms of its computational expressiveness. For example, we needed bet-
ter support for capturing the coordination semantics of business processes (e.g.
explicit support for business events and exceptional situations), semantics of
business roles and business rules.

The above two points mean that it is not easy for an enterprise modeller to effectively
and efficiently use UML 1.3. for modelling systems to support enterprise distributed ob-
ject computing. Therefore, to provide a set of self-contained concepts suitable for prac-
tical enterprise modelling, we have integrated ideas from areas such as workflow sys-
tems, requirements engineering, and the ODP Enterprise Language standard [10].

2.1 Business Perspective to Process Modelling
Our approach to modellingbusiness processes is based on our understanding of what

are the criticalbusiness issues to be addressed when describing processes in the enter-

prise. A business process is represented as a dependency graph of business tasks linked
in a specific way to achieve some particular objective. A business process can be con-
trol-driven or data-driven, or both, and our model provides a rich semantics for expres-
sions of these task dependencies. Our model also supports the composition of business
tasks in a way that is suitable for implementation as off-the-shelf components. In addi-
tion, we make provision for an association of business tasks with business roles to exe-
cute them.

Although our business process model uses concepts found in many workflow sys-
tems, nonetheless we view workflow as an IT solution to automating and managing
business processes, mostly focusing on the execution semantics. Instead, in our ap-
proach, we have attempted to come up with a succinct business process model that en-
compasses different workflow execution semantics. In addition, we consider business
processes in the context of other business determinants, such as business roles, business
entities and business events resulting in an emphasis on business semantics over com-
putational semantics. Our submission to the OMG [9] describes a number of alternate
mappings from our business process concepts to various CORBA technologies, only
one of which uses the OMG’s Workflow Management Facility specification [11].

2.2 The Duality of Business Processes and Business Roles
We believe that business process modelling is only one (though frequent) approach

to modelling a business. There are other possible ways of modelling and, in particular,
we argue thatbusiness role modelling represents an alternative and/or complementary
way of modelling the enterprise. This duality of role-based and process-based ap-
proaches is also reflected in our paper. In fact, we provide a separation of process-based
and role-based modelling concepts as a way of offering different modelling choices. In
addition, we separate the notion of business role and business entity, as this separation
provides a powerful mechanism for distinguishing between required behaviour and
business entities that can satisfy this behaviour.

2.3 Business Events
In both, process-based and role-based approaches, it is important to exposebusiness

events of significance to the enterprise. These events are associated with the modelling
elements that can be their sources or sinks and our approach allows for flexible mapping
of business event parameters onto the business process elements as well as business
roles.

2.4 Business Processes and their Support in UML
It is our view that the modelling ofbusiness processesrequires the ability to express:

• complex dependencies between the individual business tasks (i.e. logical units of
work) constituting a business process. Both control dependencies and data de-
pendencies, as well as rich concurrency semantics, must be supported.

• representation of several business tasks at one level of abstraction as being a sin-
gle business task at a higher level of abstraction and precisely defining the rela-
tionships between such tasks. This must incorporate the activation and termina-
tion semantics for these tasks.

• representation of iteration in business tasks

• various time expressions, such as duration of a task and support for expressions
of deadlines

• support for the detection of unexpected business events that need to be acted up-
on, i.e. exceptional situations

• initiation of specific tasks in response to business events arrival

• associations between the specifications of business tasks and business roles that
perform these tasks and also those roles that are needed for tasks execution

While UML activity diagrams can provide support for most of the above require-
ments, we have identified a number of difficulties for their use in practical modelling:

• Swimlanes are not adequate to represent complex associations of responsibilities
to activities (i.e. roles to tasks in our model), and in particular this mechanism
does not scale (e.g. how we deal with tens or hundreds of activities) and how we
deal with assigning several roles to one activity.

• External events cannot be used to start activities except by the intermixing of nor-
mal states from UML state machines and activity states from UML activity dia-
grams, as only the completion event of an activity state (and not an external event)
can trigger the transition to another activity state.

• According to [12], “Normally, an activity graph assumes that computations pro-
ceed without external event-based interruptions (otherwise an ordinary state ma-
chine would be preferable).” Hence, most of the states in an activity diagrams are
action states or sub-activity states. However, it is also legal to include ordinary
states (from state machines) into activity diagrams. This presents the additional
modelling problem of distinguishing between those transitions that are triggered
by the completion of previous activity state and the external transitions.

• Activity graphs support only very simple forms of synchronization and impose a
well nesting constraint such that every branch has a corresponding merge and
every fork a corresponding join. It is common for a business process to not satisfy
such a constraint, to require complex forms of synchronization and, in fact, to not
be expressible using an explicit end-of-activity state but instead terminate when
‘there is no work being done, and nothing more to be done’.

All of the above suggests that activity diagrams can be used for some business proc-
esses - those that include a well-defined sequence of business steps, each of which can
be completed with certainty, and without external events involved. In general, business
processes require support for more complex concurrency than supported by activity di-
agrams. For example, one needs a form of unrestricted concurrency that allows the dy-
namic creation of many parallel chains of execution without requiring that these inde-
pendent chains need to be joined at a later stage.

Thus we believe that business process semantics requires a richer behaviour speci-
fication than that provided by UML state machines (the basis for UML activity dia-
grams). Therefore we derive our business processs model from more fundamental UML
model elements: UML::NameSpace, UML::ModelElement, UML::Action and
UML::Parameter as illustrated in Figure 1.

C
lo

c
k

S
e

n
d

 C
o

n
m

u
n

ic
a

ti
o

n
R

e
c
e

iv
e

 C
o

m
m

u
n

ic
a

ti
o

n

U
M

L
::

N
a

m
e

S
p

a
ce

 (
a

b
st

ra
ct

)
U

M
L

::
M

o
d

e
lE

le
m

e
n

t
(a

b
st

ra
ct

)

M
u

lt
i
T

a
s
k

O
u

tp
u

t
S

e
t

O
u

tp
u

t
0

..
*

0
..

*

co
n

ta
in

s

S
im

p
le

 T
a

sk
 (

a
b

st
ra

ct
)

D
e

c
is

io
n

B
u

s
in

e
s
s
 P

ro
c
e

s
s

In
p

u
t

S
e

t
In

p
u

t
0

..
*

0
..

*

co
n

ta
in

s

A
p

p
lic

a
ti
o

n
 T

a
s
k

D
a

ta
 F

lo
w

F
lo

w
 (

a
b

st
ra

ct
)

D
a

ta
 E

le
m

e
n

t
(a

b
st

ra
ct

)
1

0
..

*

1

0
..

*

si
n

k

1

0
..

*

1

0
..

*

so
u

rc
e

C
o

m
p

o
u

n
d

 T
a

s
k

0
..

*
0

..
*

co
n

ta
in

s

re
a

lis
e

s

In
v
o

k
e

r
T

a
s
k

s
y
n

c
h

ro
n

o
u

s
 :

 B
o

o
le

a
n

T
e

rm
in

a
to

r
T

a
s
k

s
ty

le
 :

 S
tr

in
g

C
o

n
tr

o
l
F

lo
w

D
a

ta
S

e
t

(a
b

st
ra

ct
)

0
..

*
0

..
*

co
n

ta
in

s

1

0
..

*

1

0
..

*
so

u
rc

e

T
a

sk
 (

a
b

st
ra

ct
)

fu
n

c
ti
o

n
 :

 S
tr

in
g

e
x
c
e

p
ti
o

n
_

h
a

n
d

le
r

:
B

o
o

le
a

n
3

..
*

3
..

*

co
n

ta
in

s

0
..

*
0

..
*

co
n

ta
in

s

0
..

*

1 0
..

*

1

in
vo

ke
s

1
..

*

0
..

*

1
..

*

0
..

*

te
rm

in
a

te
s

C
o

n
tr

o
l
P

o
in

t

1

0
..

*

1

0
..

*

si
n

k

1

0
..

*

1

0
..

*

tr
ig

g
e

rs

0
..

*
0

..
*

co
n

ta
in

s

U
M

L
::

P
a

ra
m

e
te

r

E
x
c
e

p
ti
o

n

Figure 1 Business Process Model

2.5 Business Roles and their Support in UML
In terms ofbusiness roles, we believe that they should be described as fragments of

behaviour of the enterprise - those that can then be fulfilled by specificbusiness entities.
The separation of the concepts of business entities and business roles enables the spec-
ification of the enterprise in terms of behaviour and not in terms of business entities.
This modelling approach provides flexibility in assigning business entities to business
roles; one business entity can fill more than one role and one role can be filled by dif-
ferent entities, as long as behaviour of such an entity is compatible with the behaviour
of that business role. This allows flexibility in changing the assignments of business
entities to business roles as new policy or resource requirements may demand. This is
possible because of the way we partition the behaviour of business roles onto business
entities.

Consequently, we believe that it gives more expressive power to describe business
roles in terms of fundamental behaviour, as included in the UML common behaviour
package (rather than as a concept within UML collaborations). In fact, we believe that
the UML concepts of Action and Action Sequence can be used to define a business role
and we derive our definition of a business role from these UML concepts.

Such treatment of business roles also provides a basis for flexible assignment of the
performers of actions in a dependency graph ofbusiness tasks forming abusiness proc-
ess. In fact, a business role can be regarded as a collection of actions that are involved
in performing one or more business tasks and the grouping of these actions corresponds
to the definition of business roles. This business task vs. business roles separation gives
an additional power of expression to the already described business roles vs. business
entities separation.

3 Business Process Model

The basic building block of business process model is the task. Tasks are then con-
figured through the use of data flows and control flows into compound tasks, a larger
building block. This is repeated until there is a compound task which describes the com-
plete business process. Examples of business processes are issuing a Call for Papers for
a conference and selecting from submitted papers. The business process model is shown
in Figure 1.

3.1 Tasks in isolation
A task defines a self-contained unit of work in terms of its inputs, its function, and

its outputs. Tasks can be divided into two subtypes: simple tasks and compound tasks.
A simple task refers to an activity that is carried out without further refinement at this
level of abstraction, while compound task contains a set of statically-defined tasks that
are co-ordinated to perform some larger scale activity (and will be discussed in Section
3.2).

Simple tasks can be divided into three subtypes: application task, invoker task, and
terminator task. Application tasks (the most common variety) are just wrappers to ena-
ble applications (e.g. assign a paper ID to a paper) to be coordinated within a business
process. Invoker task and terminator task subtypes are used to coordinate other tasks
within a compound task; they enable tasks to be dynamically created and terminated (in

a variety of ways) at run-time. For the purposes of the graphical notation, there are some
common subtypes of application task: Decision, Clock, SendCommunication, and Re-
ceiveCommunication; however, these are semantically indistinguishable from other ap-
plication tasks.

Tasks have input sets, output sets, and exceptions (which are subtypes of output set)
as illustrated in Figure 2. An input set models the information required to commence
execution of a task as a set of name-value pairs known as inputs. An output set repre-
sents a possible outcome of the execution of a task; it serves both as an indication that
the task has terminated and provides a set of outputs (name-value pairs) associated with
that outcome. An exception indicates that the task has terminated having failed to per-
form its function; it may have a set of outputs associated with that failure. There can be
multiple input sets, output sets, and exceptions, modelling alternative circumstances in
which the task may start, complete or fail. Note that a standard system exception is al-
ways available to signal a non-specific failure of a task (and is often omitted in the
graphical representation). For example, the Review A Paper task takes a paper as input
and provides a review as an output.

A task commences execution when one of its input sets is “enabled”, which requires
that values have been supplied for all the inputs in that input set. (A more complete def-
inition of an enabled input set is given in Section 3.2.3). The execution of the task is
parameterised by the nominated input set and the values of its input. Exactly one input
set is associated with the execution of a task instance (Exclusive OR semantics).

When a task completes execution, one of its output sets will be enabled (see Section
3.2.3 for a definition of enabled output set). The completion of the task yields both the
nomination of an enabled output set and values for the outputs defined by that output
set. Exactly one output set (which may be an exception) is associated with the comple-
tion of a task instance (Exclusive OR semantics).

The lifecycle of a simple task is quite straightforward. Having been created, it waits
until one of its input sets is enabled, executes its function and terminates, enabling one
of its output sets by supplying data values for all of its outputs. The lifecycle of a com-
pound task is discussed in Section 3.2.4.

E
E1

paper: Paper

do a paper review

review: String

Simple Task

Review Paper

Input
Name & TypeName & Type

Output

Output SetInput Set

Exception

Task FunctionTask Name

Output

Input

Figure 2 Example of a Simple Task

3.2 Task Coordination
A compound task contains tasks, flows, and control point, as illustrated in Figure 3.

Flows and control points are used to coordinate the execution of the tasks within a com-
pound task.

3.2.1 Flows
In abstract, a flow represents a causal relationship in a business process. Each flow

has an associated source or sink (diagrammatically, the source is on the left and the sink
on the right). The source of the flow must “happen” before the sink of the flow. For ex-
ample, the conference proceedings cannot be printed until the best set of papers has
been chosen.

Flows within a compound task must be acyclic; that is, things cannot happen in a cir-
cular order. This rule can be visualised as “all flows are drawn travelling from left to
right, and do not cross task boundaries”. A precise definition of legal flows based on
relative positions in the containment hierarchy is given in [9].

We define two concrete subtypes of flow: data flow and control flow.

3.2.2 Data Flows
Data flows propagate data between causally-related inputs and outputs. For example,

an input to a compound task is often the source of data flows leading to the inputs of
some of its subordinate tasks. The outputs of subordinate tasks may supply values need-
ed for the inputs to other subordinate tasks or as the outputs of the compound task. The
data propagates along the data flow when the source of the data flow becomesenabled.

Although a data flow has exactly one source and exactly one sink, there is no restric-
tion on the number of data flows that can be sourced or sinked by an individual input/
output. If an input/output is a sink of more than one data flow, then the data value for
that input/output can be supplied by any one of the enabled data flows (Inclusive OR
semantics). If more than one of the data flows is enabled (to provide a data value), then

Compound Task

Control Point

Control Flow

Data Flow

aPaper: Paper

ap: Paper

Receive a Paper handels receipt of a paper submission

Store paper

Notify
Author

Figure 3 Example of a Compound Task

the choice of data flow to supply the value is arbitrary. If there are many data flows with
the same input/output as their source, then the data value will be transmitted along all
data flows to their sinks (AND semantics).

3.2.3 Control Flows and Control Points
A control flow represents a causal dependency in a business process, by ensuring

that one thing happens before another. The source of a control flow is an input/output
set rather than an individual input/output (as there is no data movement associated with
a control flow). Control is propagated along the control flow when the source of the
control flow becomes enabled.The sink of a control flow is at a control point which is
attached to an input/output set. An input/output set can have many control points, each
of which can be the sink for many control flows.

Although a control flow has exactly one source and exactly one sink, there is no re-
striction on the number of control flows that can be sourced by an individual input/out-
put set nor on the number of control flows that are sinked by an individual control point.
If an input/output set is the source for many control flows, then when that source input/
output set becomes enabled, the control points which are the sinks for those control
flows becomes enabled. If a control point is the sink for many control flows, then only
one control flow is needed to actually enable the control point (Inclusive OR semantics).

An input/output set issatisfied when all of its inputs/outputs have been assigned val-
ues and all of its attached control points have been enabled (AND semantics). An input/
output set must be satisfied for it to be becomeenabled. Only one of a task’s input sets
can become enabled; the choice among the satisfied input sets is arbitrary. Similarly
only one of a task’s satisfied output sets can become enabled (when the task terminates);
the choice again is arbitrary.

Unlike inputs/outputs, control points do not form part of an input/output sets, but are
external to them. While inputs and outputs are part of the fundamental definition of a
task, control points are not fundamental to a task’s definition but rather to the configu-
ration of this task into a larger piece of behaviour. As an analogy, tasks are bricks, while
data flows, control flows, and control points are the mortar that binds them.

3.2.4 Lifecycle of a Compound Task
The lifecycle of a compound task is closely related to the lifecycle of its contained

tasks. When a compound task commences execution (as a result of one of its input sets
becoming enabled), it first creates instances of each of its contained tasks, each of which
will then wait for one of its input sets to become enabled. Secondly, the compound task
enables the flows from its enabled input set and its contained inputs (usually resulting
in one or more of the contained tasks commencing execution). When a contained task
terminates, its enabled output set (possibly an exception) becomes enabled, which
(through flows) may enable further contained tasks to commence execution, and so on.

A compound task completes when all of its contained tasks have either completed
their execution or are unable to execute (none of their input sets were ever enabled). It
is quite normal for some contained tasks to never be executed; these will typically rep-
resented some alternative course of action, which was not taken in this instance. Nor-
mally, the completion of a compound task results in one of its output sets (possibly an
exception) being suitable to be enabled (i.e. all outputs have received values, and all as-

sociated control points are enabled). This output set is then enabled, representing the
outcome of the compound task. If there are more than one output set capable of being
enabled, then one is arbitrarily chosen to be enabled. If a compound task completes and
there is no output set that is capable of being enabled, then the compound task’s system
exception is enabled.

4 Business Entity Model

In this section, we describe our approach to business entity modelling by introducing
our business entity concepts and showing their relationship to our other EDOC models.
The business entity model is concerned with the descriptions of the behaviour of roles
that will, as a collection, describe the behaviour of the enterprise system. Role-based
specification represents a complementary specification of an enterprise to process-
based specifications.

Central to our business entity model are the abstraction of business roles, as illustrat-
ed in Figure 4. A business role represents a characterisation of some part of the behav-
iour of the system being described. Performer and artifact roles are specialisations of
business roles. Performer roles describe active behaviour while artifact roles character-
ise those things that are needed for the actions of performer roles (i.e. artifact roles do
not initiate behaviour). A business entity can be said to fill a business role if it is capable
of enacting the behaviour described by the role being filled. Organisational units are a
composition of business roles, enabling the collective behaviour of a set of roles to be
another (larger) role. This gives us the ability to describe behaviours at different levels
of abstraction.

Has no
operations or
methods

UML::DataType (from

UML::Action (from Common

Performer Role Artifact RoleOrganisational Unit

Task

perform

0..*0..*

needs

UML::Class (from Core)

Business Entity

Business Entity Property Set

Business Role

1..* 0..*1..* 0..*

associated with
+typ

0..*

1..*

+placehold
0..*

+fille

1..*

characterised by

Figure 4 Business Entity Model

4.1 Business Role
A business role defines a placeholder for behaviour in a context. This context is an

organisational unit (established with some objective in mind) and the behaviour of the
role becomes part of the behaviour of the organisational unit as a whole. A business role
is defined by its behaviour, its structure and a context in which it exists. For example, a
Programme Committee Chair is a role in the context of a Programme Committee (an
organisational unit).

Business role inherits from the UML concept of Action, which enables a generic de-
scription of behaviour. The behaviour can be expressed using different languages, var-
ying from a program code to English statements (we do not assume any particular spec-
ification language). Each business role is associated with a UML Class to provide it
with a structural description. Finally, each business role is defined within the context of
an organisational unit, which is a specialisation of a business role that is composed of
other business roles. Thus organisational units (as business roles) can be composed into
larger organisational units, and so on, until the enterprise has been modelled.

Business role has two subtypes: performer role and artifact role. A performer role de-
scribes behaviour for carrying out tasks in enterprise - those that will be assigned to the
business entities fulfilling the performer role. These entities will be responsible for the
execution of some aspects of the tasks. Artifact roles have behaviour, however the be-
haviour described is in some sense passive in that artifact roles do not initiate the exe-
cution of any action. Artifact roles are used to represent inanimate things in the system
such as resources. For example, a Programme Committee member (performer role) per-
forms the review task using a paper (artifact role).

In a process-based description, the behaviour of a business process is specified in
terms of causally-ordered tasks. There is a correspondence between actions of tasks and
behaviour described by business roles. The behaviour of a task can be composed from
(some subset of) the behaviour of one or more business roles. Thus a task is associated
with one or more business roles (i.e. performed by the performer roles and using the ar-
tifact roles). Each business role can be associated with zero or more tasks.

4.2 Business Entity
A business entity describes an actual object that can carry out (some part of) a busi-

ness role. A business role may be filled by one business entity or by a collection of them.
Similarly, a business entity can fill more than one business role. For example, Prof.
Smith (business entity) can fill the performer role of Programme Committee Chair and
the paper “O-O for Fun and Profit” can fill the artifact role of Submitted Paper.

A business entity property set is used for specifying non-functional requirements of
the behaviour of the business role. For a business entity to fill a business role, the object
instantiating the business entity must match the properties specified in the business en-
tity property set.

Instantiation of a business role is achieved by binding to a business entity that is able
to fulfill the behaviour specified by business role. This binding is possible when the be-
haviour of the business entity is compatible with the behaviour of the business role in
terms of structure and behaviour. However, binding of a business entity will commonly
be based on more than just type compatibility. Some non-functional characteristics of a

business role (e.g. QoS) may be specified as a business entity property set. Hence, busi-
ness entities to be bound to a business role can also meet some additional criteria de-
fined by the business entity property set. Bindings between roles and objects can be stat-
ically defined in the business entity model, or Yellow Pages services (e.g. the OMG
Trader service [13]) can be used to automate the selection of the object instances to fill
roles, allowing run-time binding.One approach for this is described in [18].

5 Business Event Model

The business event model provides for the attaching of sources and sinks of asyn-
chronous broadcast events to various EDOC Model Elements to allow them to expose
their actions or state changes to other parts of the enterprise. Restrictions can be placed
on how widely the events are broadcast.

The notion of an “event” itself is not defined precisely in our model; it is sufficient
to model only the business event type. A business event type explicitly exposes an ac-
tion that has a significant business semantics with respect to the enterprise being mod-
elled or its environment.

Business event sources emit events, while business event sinks receive events. For
example, withdrawing a submitted paper from a conference is an event; the business
event source for this event is the role Author while the business event sink is the Review
A Paper task.

5.1 Business Event Type
A business event type is a declaration that provides the names and types of properties

to be included in events that conform to this type. At runtime events are instantiated as
lists of named data values that may be broadcast using some notification mechanism for
consumption by subscribers to this event type.

Business event types have a name and a domain (within which the name is interpret-
ed). Business event type inherits from UML::State Machine::Event, which enables the
specification of the names and types of the properties (as UML::Parameters) that con-
forming events will contain. This approach to event types is compatible with a number
of well-known event transmission systems [14] [15] [16] [17].

Business event types are used in the context of an event emission in order to check
that the expected properties of a generated event are present and have correctly typed
values. In the context of an event consumption they simply provide the author of a no-
tification rule with a set of names and types to use as terms in a subscription expression.
It is expected that these types will be used by the mapping of the model to perform type
checking, and that they will be stored in a repository for reference from the application.

5.2 Business Event Sources and Sinks
A business event source represents the external exposure of some enterprise action,

while a business event sink represents the need for awareness of some enterprise action.

A business event source defines the business event type to be emitted, the conditions
under which a business event of that type is emitted (the event exposure rule), how the
values in the event are obtained from the source’s state (the event content mapping
specification), and extent to which the event should be broadcast. Similarly, a business

event sink defines the business event type to be received, the conditions under which
such events should be received, how the event’s values are assigned to the sink’s state,
and the extent from which events can be received.

Although events are primarily intended to support a decoupled communication par-
adigm, business event sources can be associated with specific business event sinks us-
ing thetransmit_to association.

The extent to which the event is to be broadcast/received can be set to three built-in
values:

• “global”, indicating that the event can be broadcast/received outside the scope of
the enterprise being modelled

• “application”, indicating that this event can be broadcast/received by elements in
this enterprise model

• “direct_only”, indicating that the event can only be broadcast to, or received
from, explicitly-defined transmission paths (as defined in thetransmit_to as-
sociation).

User-defined extents can also be supported (typically implemented using event fil-
tering).

5.3 Actions of Interest
Business event source and sink are (deliberately) very general concepts to ensure

many different model elements to be producers and consumers of events. However, it
is necessary to nominate exactly what actions may be of interest for each kind of model
element. All events are based on actions of interest, but not all actions of interest will
be used as events. Note that it is theoretically possible to emit/receive all actions of in-
terest as events, but the number of events becomes overwhelming in practice, hence our
requirement that event sources and sinks are explicitly identified in the enterprise mod-
el.

The commencement of execution of a task is an “action of interest”; so is its termi-
nation. input sets and output sets have two actions of interest: becoming satisfied (once
all its inputs and attached control points have been satisfied), and becoming enabled
(when it is chosen by the task for its commencement and termination). The only action
of interest for an input or output is to be assigned a value. The transmission of data or
control along a flow is an action of interest.

For business roles and business entities, there are a number of actions of interest, in-
cluding their creation and termination, the assignment or change of an attribute value,
and the invocation or return of a method. The performing of a task by a performer role
and the use of artifact role in a task are actions of interest. The assigning and de-assign-
ing of business entities to fill business roles are also actions of interest.

5.4 Events as Data Flows
One of the by-products of the event content mapping is the ability to receive an event

and assign the contents of the event to/from an input or output. Within an enterprise
model, the values of inputs/outputs are normally transmitted via data flows (subject to
the hierarchical structure of compound tasks). Events enable the values of inputs and
outputs to be transmitted or received from beyond the scope of the containing com-

pound task (or even the enterprise model itself). Such business event sources and sinks
behave similarly to the sources and sinks of data flows for the purposes of propagation
of data and determining whether an input/output set is satisfied.

6 Conclusion and Future Work

In this paper we have presented an object-based approach for modelling enterprise
distributed object computing systems. We exploit the benefits of distributed object
technology to enable an object-oriented description of enterprises, in terms of business
processes, business entities, business roles and business events.

The benefits of using distributed object technology for modellingbusiness processes
stem from the fact that objects can represent key artifacts of business processes: tasks,
data transferred between tasks, resources needed for task execution as well as perform-
ers that initiate these tasks. The purpose of a business process model is to describe how
these different objects are related to each other, both in terms of their static (e.g. task-
performer assignment) and dynamic (data flow and control flow) relationships. The use
of objects allows for a more flexible approach in implementing and modifying business
processes, as opposed to the monolithic structure of workflow products typical for an
earlier generation of this technology. Further, the use of standard interfaces that specify
behaviour of objects representing business process artifacts enables better interopera-
bility of business processes specified by different organisations and/or supported by dif-
ferent underlying process engines.

The benefits of using objects for implementingbusiness entities have been exploited
since the very early days of object oriented technology. Distributed objects bring new
capabilities in that the objects can be developed independently by different parties and
they can interact by sending messages over the network. via their interfaces which ex-
pose their externally visible behaviour. The novelty of our approach is to further extend
capabilities of object-oriented modelling by introducing the concept ofrole. Using roles
it is possible to describe an enterprise in terms of fragments of behaviour that corre-
spond to the positions in organisations. The benefit of this approach is that this allows
many options for assigning objects to roles, even to the extent of run-time binding.

In addition, the use of latest distributed object platforms allows the exploitation of
event-based interactions between objects. This mechanism is particularly suitable to be
used as a way of communicatingbusiness eventsamong parties involved in enterprise
- be that as part of a streamlined business process, or as part of less prescriptive com-
munication or collaboration between objects filling roles in an organisation.

In summary, this paper presents an integrated approach for modelling enterprise ar-
chitectures to be implemented using distributed object technology. The approach pre-
sented deals mostly withanalysis stage of system life cycle. To satisfy a need for wide
range of modelling choices we provide a rich set of process-based and role-based mod-
elling concepts and flexible ways of associating business events and business rules with
business processes and roles. Our approach is well suited as a candidate for extending
Unified Modelling Language (UML) to support the requirements of enterprise distrib-
uted object computing (EDOC) systems and is currently considered in the Object Man-
agement Group (OMG).

We note that in our approach we also supportdesign andimplementation phases of
an object oriented life cycle. These aspects of our approach are beyond the scope of this
approach and are presented elsewhere [18].

In the immediate future, we intend to pursue alignment with other proposed UML
concepts, e.g. Capsule, Port, Connectors and Business Protocols [19]. We will also ex-
plore the use of UML collaboration diagrams and state diagrams for expressing the se-
mantics of Application Tasks. There are interesting parallels between the role concept
in our Business Entity model and the UML Classifier Role, which need to be thoroughly
investigated.

In the longer term, we plan to more explicitly deal with various kinds ofbusiness
rules andpolicies. Although some of these have been implicitly treated in the context
of other EDOC modelling artifacts, we argue that there is a need for a more flexible
ways of changing these business constraints than what is currently supported in our ap-
proach.

Finally, we also plan to investigate whether it is possible to identify certain business
patterns, in particular those that could be useful for business process specification. The
use of patterns would enable easier and more rapid specification of frequently occurring
situations in the specification of business process and would enable shorter develop-
ment time.

Acknowledgments

Our overall views on enterprise modelling have been substantially influenced by our
involvement in the standardisation of the Open Distributed Processing Enterprise Lan-
guage within ISO [10]. This standardisation work provided the basis for our business
entity model. Our business process model has been substantially based on results from
a workflow project [20] carried out at the Department of Computer Science, University
of Newcastle upon Tyne, UK, and sponsored in part by Nortel Corporation. We espe-
cially thank Stuart Wheater at University of Newcastle upon Tyne for the many produc-
tive discussions we have had with him, and the feedback he has given us.

The work reported in this paper has been funded in part by the Co-operative Re-
search Centre for Enterprise Distributed Systems Technology (DSTC) through the Aus-
tralian Federal Government’s CRC Programme (Department of Industry, Science &
Resources).

References

[1] Object Management Group, “CORBA Components - Volume 1”, OMG orbos/99-07-01,
August 1999.

[2] Ed Roman, “Mastering Enterprise JavaBeans and the Java2 Platform, Enterprise Edition”,
John Wiley & Sons Inc, 1999.

[3] Dale Rogerson, “Inside COM”, Redmond, WA: Microsoft Press, 1996. ISBN 1-572-
31349-8.

[4] M. Jarke, J.A. Bubenko, C. Rolland, A. Sutcliffe, Y. Vassiliou, “Theories Underlying Re-
quirements Engineering: An Overview of NATURE at Genesis”, in Proceedings of the
IEEE Symposium on Requirements Engineering, RE'93, San Diego, California, Jan. 1993,
IEEE Computer Society Press.

[5] G.J. Ramackers, “Integrated Object Modelling, an Executable Specification Framework
for Business Analysis and Information System Design”, Ph.D. thesis, University of Lei-
den, The Netherlands, 1994.

[6] Y. Breibart, D. Georgakopoulos, H. Schek, “Merging Application-centric and Data-centric
Approaches to Support Transaction-oriented Multi-system Workflows”, SIGMOD
Record, 22:3, Sept. 1993, pp 23-30.

[7] Object Management Group, “Unified Modelling Language v1.3”, OMG ad/99-06-08, June
1999.

[8] Object Management Group, “Request for Proposal: UML Profile for Enterprise Distribut-
ed Object Computing”, OMG ad/99-03-10, March 1999.

[9] DSTC, “UML Profile for Enterprise Distributed Object Computing”, OMG ad/99-10-07,
October 1999.

[10] ISO, “Open Distributed Processing - Enterprise Language”, ISO/IEC JTC1/SC7/SC17
N0080, July 1999.

[11] Object Management Group, “Workflow Management Facility”, OMG bom/98-06-07, July
1998.

[12] J. Rumbaugh, I. Jacobson, G. Booch, “The Unified Modeling Language Reference Manu-
al”, Addison Wesley, 1999.

[13] Object Management Group, “Trading Object Service”, OMG formal/97-12-23, 1997.

[14] Object Management Group, “Event Management”, OMG formal/97-12-11, 1997.

[15] Object Management Group, “Notification Service”, OMG telecom/99-07-01, July 1999.

[16] B. Segall, D. Arnold, “Elvin has left the building: A publish/subscribe notification service
with quenching”, Proc. Australian Unix Users Group, Brisbane, Australia, September
1997.

[17] K. Riemer, “A Process-Driven Event-Based Business Object Model”, Proc. 2nd Interna-
tional Enterprise Distributed Object Computing Workshop, November 1998, pp 68-74.

[18] A. Barros, K. Duddy, M. Lawley, Z. Milosevic, K. Raymond, A. Wood, “Mapping Enter-
prise Roles to CORBA Objects using Trader”, 3rd IFIP/GI International Conference on
Trends towards a Universal Service Market, Sept 2000.

[19] B. Selic, J. Rumbaugh, “Using UML for Modeling Complex Real-Time Systems”,
http://www.objectime.com/otl/technical/umlrt.pdf

[20] J.J. Halliday, S.K. Shrivastava, S.M. Wheater, “Implementing Support for Work Activity
Coordination within a Distributed Workflow System”, Proc. 3rd International Enterprise
Distributed Object Computing Conference, Sept 1999, pp 116-123.

