
Inter-enterprise Contract Architecture For Open Distributed Systems:
Security Requirements

Zoran Milosevic, David Arnold, Luke O’Connor, {zoran, arnold, luke}@dstc.edu.au
Distributed Systems Technology Centre, The University of Queensland QLD 4072, Australia

Abstract
An important element of electronic inter-enterprise

interactions is support for a rapid and cost-effective estab-
lishment of contracts, monitoring of parties’ performance
to the contract and possible enforcement capability. We
have previously developed a business contract architecture
to address these requirements [6,7]. This paper presents an
extension of the earlier work. The concept of binding is
used to describe the interactions between the components
of the contract architecture so that standard contract
sequences can be stored in a public repository for future
reuse. Various security requirements of the architecture are
identified, from the application and distributed infrastruc-
ture perspectives. It is then shown how a secure contract
architecture can be derived to address these requirements.

1 Introduction

The joint potential of open distributed systems (ODSs)
and the Internet is an important factor to further promote
all aspects of electronic commerce (EC), including inter-
enterprise business dealings. The capabilities of ODSs can
be exploited to i) express semantics of common contract
documents and enable their storage in a publicly accessible
repository, ii) describe different roles involved in perform-
ing contractual operations and their authority, permission
and responsibilities and, iii) model typical contractual sce-
narios as reflected in the interactions between trading part-
ners and their various temporal orderings. The Internet
enables cost-effective information exchange between
enterprises at a global level.

In spite of the promises of both technologies, a support-
ing architecture is still lacking to address an important
aspect of electronic business activities conducted globally.
A legally sound framework for typical operations associ-
ated with establishing contracts and monitoring perform-
ance of the par t i es to the con t rac t i s requ i red .
Unfortunately, current EDI technologies appear to be inad-
equate and too expensive to provide such support.

Our work on developing a business contract architec-
ture can be seen as a step towards achieving such support.
Over recent months we have indeed observed several com-
mercial products which address some of our concerns
raised in [6,7] with several examples offered in [13, 14].

These products offer useful though partial solutions to
various problems associated with rapid, flexible and
secure support for inter-enterprise EC. In particular, the
notion of security includes many facets, ranging from
security requirements of applications, via the security of
distributed middleware technologies through to security of
underlying communication and operating system technol-
ogies. While some progress has recently been made in pro-
viding more secure EC transactions over the Internet, (e.g.
secure payments), substantial work is still needed to pro-
vide a sound security architecture that addresses a full set
of requirements for global EC activities.

In this paper we investigate security requirements perti-
nent to inter-enterprise interactions by using a business
contract architecture (BCA) previously developed [6,7].
We use the BCA because it is a technology-independent
architecture, with a rich set of security requirements from
the application, and distributed infrastructure perspectives.

Section 2 outlines the BCA and proposes the use of
workflow to automate contractual procedures. Section 3
describes implementation of the BCA using two distrib-
uted environments. Section 4 addresses architectural
issues mentioned in the previous two sections from differ-
ent security perspectives. Section 5 discusses security
related work which we plan to undertake in near future.

2 Basic concepts of the BCA

Based on observations of how contracts are viewed
from economic, legal and business points of view, we have
developed a BCA which reflects typical operations associ-
ated with contract negotiation, validation, monitoring and
enforcement [6,7]. The basic architectural components of
the BCA are as follows.

The Contract Repository (CR) provides a common
understanding of contract types. It stores:.
• Some general contract element types which are com-

mon to many contracts (e.g. the date of the contract
agreement, duration of the contract, parties to the con-
tracts, etc.).

• Different contract types ranging from very simple con-
tracts (no long-term relationships, the items traded are
well defined); to very complex contracts, such as those
governing international inter-organisational contracts.

• Common contractual scenarios. Since many contrac-
tual activities in the real world involve scenarios that
are to a great extent common across organisations,
these scenarios can be stored in a public repository to
facilitate future reuse.
Descriptions of these types are introduced to the con-

tract repository through a special trusted authority called a
contract administrator.

The Notary stores contract instances after the contract
has been agreed upon and checked for validity. This can be
later used as evidence of agreement in the contract moni-
toring and enforcement activities.

The Legal Rules Repository (LRR) stores the rules and
policies of a particular legislative domain.

The Contract Validator (CV) ensures the creation of
legally valid contract instances. This includes the checking
of the following aspects of contract validity.
• The competence aspect. To accomplish this, the CV

verifies the capacity of parties willing to enter a con-
tractual relationship (see 4.1 below).

• The clarity aspect of a contract template. In most cases
the contract semantics will be unambiguous if it is
derived from a template in the CR. The CV can be used
to provide additional checking should a need for this
arise.

• The legal purpose element of a contract, based on the
information in the legal rules repository. This is done
through the contract legality (CL) object.

• The consideration element of contract. This can be
done by checking whether the contract template con-
tains those contract elements which describe what is
exchanged between the parties.
The Contract Negotiator (CN) mediates the negotiation

process (alternatively, this can be carried out by the parties
themselves). During this stage the parties can exchange
several contract templates (offers and counter-offers) and
the contract template may be submitted for validity check-
ing.

The Contract Monitor (CM) enables monitoring of the
activities of parties, measuring their performance and
recording the relevant events. It can also signal a contract
non-performance to the contract enforcer if it detects such
an event.

The Contract Enforcer (CE) makes an enforcing action,
upon being signalled by the CM, either i) directly on the
parties to ensure that the actual behaviour conforms to the
contract, or ii) by informing the CV which may prevent
further access to the system by non-conforming parties.
While the pro-active approach to contract enforcement is
not widely used in business contracts, we envisage that this
can be done in an EC system. A business law is normally
less ambiguous than common law and direct interpretation
is possible. Reactive and post-contract enforcement will
usually require arbitration and possibly human intervention

in determining the appropriate (corrective or punitive)
actions.

A contract ‘life-time’ includes i) contract establishment,
which includes contract negotiation and validation proce-
dures and ii) contract performance, which is related to the
behaviour (performance) of parties to the contract and may
include monitoring and enforcement activities. In many
cases the order of these steps can be automated and thus it
can be anticipated that workflow management systems will
be well suited for some of these sequencing.

Since workflow systems are at present designed for the
use within organisational boundaries, some necessary adap-
tions are need to facilitate workflow execution in an inter-
enterprise setting. This raises several novel security
requirements. For example, contract negotiation involves
several activities which need to be performed in order to
ensure authorised initiation and signing of a contract offer
which will be sent to another trading partner.The sequence
of the contract steps is given in more detail in section 4.1 to
include some relevant security aspects.

3 Realisation in distributed environments

The BCA can be realised by using different middleware
technologies. We indicate how this can be done by using a
CORBA complaint platform [10], and the DSTC Architec-
ture model [2] (referred to as ‘DSTC-A’ hereafter).

The CORBA Interface Repository (IR) represents an
elementary type repository. It can used as a persistent stor-
age which contains the CR with the contract types. In fact,
an IDL file which contains the description of different con-
tract types can be compiled and stored within the IR by an
authorised administrative body, responsible for creating and
administering contract templates. These can then be
retrieved at runtime, by both servers and clients, using IR
supplied functions.

The fundamental contract operations can be imple-
mented in different ways. In order to accomplish a suffi-
ciently generic solution, a contract interface can be created
which includes negotiation, monitoring and enforcing oper-
ations. Such a contract interface can then be used by any
server that requires contractual operations: the server’s
interface inherits properties of the contract interface.

Further, each of the BCA components, can be imple-
mented as the corresponding object which interface speci-
fies the operations associated with these roles1.

The CORBA environment however, is inadequate to
store the templates for the interactions between objects
involved in providing a service. In other words, we can
store the representation of common contract documents
which reflect semantic aspects of contracts, but it is not

1.A detailed description of a prototype implementation using CORBA is
beyond the scope of this paper and can be found in [6].

easy to store the semantics of contract scenarios as also
required by the BCA. To address this problem we propose
the adoption of the binding concept introduced within the
RM-ODP [3] and further refined within the DSTC-A [2].

A binding is an association between a set of objects that
allows objects to interact. Bindings are strongly typed - a
binding type defines the roles of the objects in a binding
and the interaction that can occur between objects fulfilling
those roles [2]. Each role of a binding specifies an interface
type that must be satisfied by objects fulfilling that role. A
binding includes multiple participants, a definition of the
interaction between them and a specification of obligations
and requirements of each of the participants and of the
environment itself. Binding semantics thus provides a tem-
plate for interactions between objects.

We contend that the binding is also a suitable means to
model enterprise related interactions, such as those associ-
ated with business contracts. Everyday experience suggests
that there is a large (but still finite) number of scenarios
associated with business contract interactions. These for
example can be related to different i) temporal ordering of
interactions, ii) dependencies between the entities to the
contract, iii) dynamically changing number of participants
involved during the contract life time (both the parties to
the contract and the BCA components) and iv) relation-
ships between contract domains.

These different contractual scenarios, expressed in
terms of a workflow process model, can be described
through the corresponding binding types. An example of
such a binding type, is depicted in Fig. 1. This binding type
includes i) the roles of CV, Notary, CM and CE (but not CN
or CL) and the roles of two parties to the contract, partyA
and partyB (in general a binding can specify roles of many
parties to the contract) and ii) supports interactions which
embody contract validation, notary operations, contract
monitoring and contract enforcement.

We anticipate that there will be various relationships
between binding types which embody semantics of the cor-
responding contractual arrangements. For example, the
subtyping relationships can be used to form an appropriate

CV

CM role

CE role

CV role

Contract
components

partyB role

Notary

type partyA

CM
CL

CE

Notary

Figure 1. A contract binding type

object

interface

CN

negotiate
validate
monitor
enforce

Interactions

object of
type partyB
object of

role

partyA role

‘contract binding type hierarchy’, in which a base ‘contract
binding type’ can be a subtype derived from the binding
type.

In addition, the standard contract interactions associated
with contract life-cycle can be used to construct required
contract binding types. For example, a ‘contract binding
negotiation type’ can describe basic negotiation related
interactions associated with contract templates i.e., offer,
counter-offer, acceptance and rejection. In the case of a suc-
cessful negotiation, this binding type specifies that these
interactions are recorded by a notary object for use as evi-
dence of agreement in the contract validation and enforce-
ment activities.

While we recognise the potential of the binding type to
model enterprise interactions, we note that the binding
types introduces new security requirements as will be dis-
cussed in 4.2.

4 Security requirements for the BCA

The concepts related to the BCA bring many new secu-
rity requirements. These need to be met in the context of i)
the implementation of the behaviour of the BCA compo-
nents and their relationships, ii) a workflow oriented
description of the sequences of contractual operations,
including their inter-organisational aspects, and iii) the real-
isation of the workflow through the use of the binding con-
cept.

This paper focuses on tow perspectives to ensuring
secure BCA operations. The application perspective is con-
cerned with specific components needed to address enter-
prise security concerns. An example is support for verifying
the authenticity and authorisation of people assigned to spe-
cific roles within a company to permit them to perform con-
tractual operations. The distributed infrastructure
perspective is concerned with enforcing security policies at
the level of objects which perform functionality associated
with contracts and the bindings which control their interac-
tions.

4.1 Application perspective

There a re th ree app l ica t ion spec i fi c secur i ty
requirements of the BCA needed to ensure its secure
operations, as elaborated below.

First, each of the BCA components need to be able to be
authenticated. We adopt the public-key cryptography [4] so
that any party wishing to use a BCA component can exploit
this security mechanism. Each party has a certificate (which
binds its name and other identifying information to an
encryption key) and a pair of encryption keys - a public key
and a private key, with the public key being the key bound
to the certificate. Certificates are registered with a Certifi-
cate Server, returning any certificate requested by any party.

The public key derives its name from the fact that it is
bound to the certificate and the certificate is publicly avail-
able from the Certificate Server. Each party keeps its corre-
sponding private key secret.

Such a security infrastructure permits messages to be
sent privately, and to be digitally signed (which in our
context is a contract or part thereof). The validity of the
signature can be checked by retrieving a set of public keys
from an appropriate set of certificates. We illustrate the use
of signatures by annotating our original proposal for the
sequence of operations for generating a contract between
parties A and B [6].

When party A retrieve a contract template C from the
CR server, a signature is included by the CR which testifies
to the correctness of the template. Party A can verify the
signature by retrieving the public key of the CR through its
certificate. Once the competency of the contract has been
established (discussed further below), A and B exchange
the template, assigning values to the elements of the C until
both agree on the final contract. At each step of the negoti-
ation each party signs its current offer, and if privacy is an
issue, also encrypts their reply. At the end of the negotia-
tion both parties have a copy of the contract signed by the
other party, which is taken as legal proof of the contract's
existence. If the contract was negotiated through a third
party then the third party may also sign the contract.

After the contract has been negotiated, both parties
check its legal purpose. This is performed, by consulting a
LRR, accessed through the CL server. Again, the responses
from the CL will be signed to verify their authenticity. If
both parties are satisfied then the contract instance is stored
in the Notary using the public key system as previously.
The CM can now start monitoring activities of the parties if
required. Both parties are bound to the contract by virtue of
their signatures on the final contract which can be checked
by the CM. If the contract is violated the CM can send
signed requests to the CE server to take action over the
violation. If any dispute arises, the sequence of signatures
derived from the contract negotiation and signed
information from the CM and CE can be used for
arbitration.

Second, parties willing to use the BCA components
need to establish a high level of trust in these components.
To this end we adopt the security mechanisms proposed in
[5]. These are based on the ‘real life’ notions of endorse-
ments, licences, insurance policies and surety bonds. These
assurances can be represented as electronic documents,
certificates digitally signed by the respective bodies, viz
endorsers, licensing authorities or insurance providers.
With this security mechanism in place, the parties willing
to use BCA can now place more confidence in all BCA
components. They could accept assurances from trusted
agencies such as licensing, endorsements or insurance

agencies about the security and competence of these com-
ponents.

Third, in order to ensure the validity of contracts, the
competence element needs to be satisfied. In the context of
the BCA this means ensuring the competency of the parties
to the contract. This is essentially the problem of determin-
ing if a given person has the authority to establish a con-
tract. We assume that the set of possible contract templates
C1, C2, ..., CCR are well-known and can be obtained from
the CR as signed documents. It is the responsibility of each
company T to peruse the set of contracts and to determine
which contracts it will enter into, and who may negotiate
the contracts. To this end, each company will establish a
publicly accessible Competency Server that contains a list
of contracts accepted by the company and a set of proce-
dures to be used to verify the competence of each contract
offered.

Our proposal is to base competence on a notion of roles,
which reflect the structure of a company, e.g. CEO,
presidents, state managers, managers, and administrators.
As is common practice, a person can proceed with a request
if the permission is obtained from some collections of the
superiors such as 3 managers or 2 state managers, or simply
the permission of the CEO. We use digital signatures and
roles to implement competency that can be verified by
people within a company and by those negotiating with the
company.

For a given company T let the set of possible roles be RT

= {R1, R2, ..., Rn}, where we may have R1 = CEO, R2 =
state manager and so on. We call RT the role profile of
company T. Now, if Ci is a contract that company T wishes
to offer, and Rj is the role of a party that can negotiate Ci,
then T defines a set S{i,j} = {S1, S2, ..., Sm} where

, is called a competency set. The meaning of the
set S{i,j} is that Rj is deemed competent to negotiate
contract Ci if Rj can gain the digital signatures of parties
that represent a l l the roles in at least one of the

. The sets S{i,j} are known as the Competency

Profile of the company. Competency Profile and in
part icular the sets Sk reflect securi ty policies of
organisations regarding the approval processes (these
policies can be quite complex). Both the role profile and the
competency profile are digitally signed by a Competency
Server that monitors changes to the profile.

As an example, consider party A attempting to negotiate
contract Ci with party B. Party A initiates a self-
competence check by retrieving its company's Role Profile
and Competency Profile. The public keys of the Role
Server and Competency Server are retrieved and the
signatures on the respective profiles are verified. Party A
then examines the entry S{i,A} in the Competency Profile

S RT⊂

Sk S i j{ , }⊂

and recovers the competency sets S1, S2, ..., Sd associated
with their role in negotiating Ci. A then selects a subset of
parties P in the company such that for at least one Sj we

have that , and requests that each person in P sign a

message to the effect that they approve of A negotiating
contract Ci. These requests may be done via email or using
a workflow model, for example. Once at least one
competency set Sj has been covered by the signatures of
responding parties, A retrieves the certificates for the
parties representing the roles specified in Sj and then
verifies the signatures. We assume that when a certificate is
created for a party their role is included in a role field.
Party B can follow the same procedure to perform a self-
competency check, and further, since the verification of
competency only relies upon public information (the role
profile, the competency profile and certificates) then A and
B can check the competency of each other.

This approach addresses some of the security issues
related to the use of a workflow to control the sequence of
contractual operations in an inter-enterprise context. This is
also an important future research topic.

4.2 Distributed infrastructure perspective

The BCA can also be realised by using the concept of a
distributed architecture such as DSTC-A model. In this
case, the BCA components can be implemented as objects
whose interfaces abstract their behaviour, and further the
interactions between them can be implemented via the
binding. The underlying distributed infrastructure provides
necessary functionality for the dynamic instantiation of
interfaces and objects, creation of bindings and addition/
removal of objects to binding. All this functionality needs
to be implemented in a secure fashion. To this end the
infrastructure should also provide necessary security serv-
ices. These are required for secure functioning of the BCA
but also for many other services in an ODS. The security
services and the BCA requirements for these are listed as
follows2.
• The integrity and confidentiality of objects and their

communication. The integrity means the protection of
information against the threat of modification by unau-
thorised users while confidentiality is protection against
disclosure to unauthorised users. Both of these are
important for the interactions between the objects
which realise BCA components and for parties to the
contract.

• Authentication of objects, the trusted process of vali-
dating an identification claimed by a principal (an

2.These are developed to meet the requirements of our distributed infra-
structure, in particular those associated with binding. Many of the issues
are also pertinent to recent CORBA security work [11]

Sj P⊂

object or a human) of the system. This process must
prohibit other principals from masquerading as other
principals [8]. An object can have several interfaces
which abstract different object’s behaviour (e.g. provi-
sion of a computational service, or a management func-
tionality). This suggests that an object can have
different identities reflecting different aspects of its
behaviour such as its real identity (used for initial
authentication), operational identity (e.g. to be included
in access control lists), and charging identity (whom to
charge for the use of resources) as also noted in [12].
Each of the BCA objects need to be authenticated and
also the objects representing parties to the contract, after
their competence have been previously verified. The lat-
ter can be regarded as the authorisation at the applica-
tion level.

• Access control (or authorisation) - for enforcing access
security policies whose rules state under which condi-
tions each of the objects can accept a binding proposal
from other object(s) on the basis of their identity. The
novel requirement arising from the binding is ensuring
multiple secure channels between objects interacting in
a binding. It is these channels along with the controlling
security objects that should provide a basis for trusted
interactions between components. There are many dif-
ferent access policies relevant to the BCA objects. For
example, an object representing a party to the contract
must not have an access to the CM or CE objects, but
these objects will need to have access the objects repre-
senting the parties (for monitoring their performance
and also some performative actions such as sending
warnings or even breaking bindings between the parties
if one of the parties misbehaves).

• Delegation of rights from one object to another. It is
often the case in ODSs that the objects providing a serv-
ice require the services of other objects. Consequently, a
complex graph of interactions can result whereby
objects invoke operations on other objects’ interfaces
(or even create new object instances). This requires a
means to pass on security information such as access
control among objects and specify constraints which
govern this. For example, parties involved in a potential
contract can delegate some of their rights to the CN for
performing negotiation operations on their behalf.

• Auditing of all object activities. This includes recording
of the activities of the objects in the system with the aim
of detecting actual or attempted security violations. This
is required for monitoring the proper functioning of all
the BCA components and in particular for monitoring
activities of the parties to the contract which is the func-
tionality of the CM object.

• Support for preventing denial of service type of attacks
which can result from events such as other legitimate
users making abusive use of network or distributed sys-

tem resources. In the context of the BCA this is
required by the CE object.

• Security management capabilities. This includes defin-
ing the different security policies and security domains
within which they are valid, and administering them.
The use of the domains enables dealing with scalability
and efficiency issues.
These security services should enforce security policies

(defined as a set of rules that constraints one or more sets of
security relevant activities of one or more sets of objects
[8]). These security services should be positioned within
the infrastructure of the DSTC-A model. Some of these can
rely on standard security mechanisms, such as public key
and secret key encryption mechanisms and Generic Secu-
rity Services API (GSS-API) to allow flexible use of
encryption services [15].

Many of security services however need to be devel-
oped to address the specifics of the distributed infrastruc-
ture. This is an area which requires substantial future work.
In the course of the development of an infrastructure to
support DSTC-A model, we have implemented some secu-
rity support. First, in the implementation of our architec-
ture model, objects provide a mediation method used to
evaluate binding proposals. This method is free to use all
and any services available to it to make its decision on the
proposal. Typically, this would be authentication and
authorisation checks on the proposed participants. Second,
we also started to address the problem of supporting secu-
rity sessions (contexts) between more than two parties. As
stated previously, this represents an important requirements
for security in the context of binding. A design and an ini-
tial implementation for secure multiparty sessions [1] has
recently been completed and is now in the process of being
tested. Additionally, support for defining and administering
policies (in generic sense) is currently nearing completion
and this will represent a good base for building support for
security policies.

5 Open issues

While some current middleware technologies provide
certain aspects of security mechanisms (e.g. DCE adopting
Kerberos system [9]) it is recognised that what is needed is
a security architecture which would encompass all the
security issues many of which were mentioned in this
paper. For example, work is currently carried out to pro-
vide such an architecture for the CORBA compliant plat-
forms [11]. Additionally, new impetus towards a broad
range of EC activities promoted by the Internet brings new
security requirements, such as those related to secure pay-
ments over an open network.

In our future work we plan to address several open
issues related to a secure ODSs in general and the BCA in
particular. This includes:

• interoperability between different security mechanisms
• revocation of the authorisation, i.e. how can privileges

be revoked in a widely distributed system
• expression of security policies
• scalability of authentication schemes and authorisations
• realising sequences of contract operations using the

binding concept and including useful workflow controls
within it.

Acknowledgments
The work reported in this paper has been funded in part by the

Cooperative Research Centres Program through the department of
the Prime Minister and Cabinet of the Commonwealth Govern-
ment of Australia.

References
[1] D.P. Barton, L.J. O’Connor. A Design and Implementation

of Secure Multiparty Sessions, DSTC Internal report., Jan. 1996.
[2] A. Berry, K. Raymond. The A1� Architecture Model. In,

ed., K.Raymond, L.Armstrong, Open Distributed Processing;
Experiences with distributed environments, Proc. of the 3rd IFIP
TC6/WG 6.1 International Conference on Open Distributed
Processing, pages 55-67, Chapman & Hall, 1995.

[3] ISO/IEC IS 10746-3. International Standard 10746-3, ITU-
T Recommendation X.903: Open Distributed Processing: Refer-
ence Model,,Part 3: Architecture, 1995.

[4] ISO/IEC 9594-8: Information Technology - Open Systems
Interconnection - The Directory: Authentication Framework (Also
ITU-T X.509).

[5] C. Lai, G. Medvinsky, B.C Neuman. Endorsements,
Licensing, and Insurance for Distributed System Services. In Pro-
ceedings of the 2nd ACM Conference on Computer and Commu-
nications Security, pages. 170-175, Nov. 1994.

[6] Z. Milosevic. Enterprise Aspects of Open Distributed Sys-
tems, A PhD thesis, Computer Science Dept., The University of
Queensland, Oct.1995.

[7] Z. Milosevic, A. Bond. Electronic Commerce on the Inter-
net: What is Still Missing? Proc. of the 5th Conf. of the Internet
Society, p. 245-254, Honolulu, June 1995.

[8] G. Mohay. The DSTC Security Model A1-SM. DSTC
Internal report, May 1994.

[9] B.C. Neuman, Theodore Ts’o. Kerberos: An authentication
Service for Computer Networks, IEEE Communications, Sept.
1994, pp 33-39.

[10] Object Management Group. The Common Object Request
Broker: Architecture and Specification, Revision 2.0, 1995.

[11] Object Management Group. CORBA Security, OMG
Document Number 95-12-1, December 1995.

[12] Sesame Consortium. Sesame V4 - Overview, Issue 1,
December 1995.

[13] Certification for Electronic Commerce, accessible at:
http://www.batnet.com/cec/

[14] Dig i ta l Notary Serv ice , access ib le a t : h t tp : / /
www.surety.com/about-dns.html

[15] Generic Security Service Application Program Interface,
Internet RFC 1508.

