
An event-based model to support distributed real-time analytics: finance case study

Zoran Milosevic1,Weisi Chen2, Andrew Berry1, Fethi A. Rabhi2
1Deontik Pty Ltd, Brisbane, Australia

2University of New South Wales, Sydney, Australia
zoran@deontik.com, chenw@cse.unsw.edu.au, andyb@deontik.com, f.rabhi@unsw.edu.au

Abstract — This paper describes key modelling concepts for
events, event patterns and related concepts needed to develop a
distributed software framework for real-time business
analytics. These concepts are specified by means of a minimal
meta-model, whose implementation can enable better
interoperability between different event processing systems.
This in turn can support better distributed, collaborative
analytics applications in many domains. We show an
implementation of our solution approach using a case study of
several business analytics problems in finance.

Complex Event Processing; real-time analytics; finance
applications.

I. INTRODUCTION
The growing availability and access to data offers

expanding opportunities for creating new insights through
analytics. These new insights can be developed by applying
various analytics techniques and appropriate tools to
discover and communicate meaningful patterns in data. Our
focus is on patterns of event instances as they occur in real
time, which we refer to as event pattern occurrences. An
event pattern occurrence signifies an occurrence of a
particular set of events that satisfy the relationship, data and
time constraints defined in an event pattern type. Examples
include relationships between observations of patient
condition in healthcare, particular combinations of buy and
sell events in stock trading or correlation between social
media postings and stock market activity. Note that the
discovery mechanisms presented in this paper can also be
applied to historical data, supporting a continuum of pattern
detection across history and into the future for a set of data
sources.

In a big data context, the detection of event pattern
occurrences requires special technology infrastructure and
techniques, such as complex event processing (CEP) [1].
CEP technology allows detection of event pattern
occurrences against events arriving with high velocity, often
from multiple data sources. CEP technology can be thus
regarded as a form of machine analysis focused on detection
of meaningful event occurrences, and which can be
augmented with statistical analysis to support predictive
capability. There are many platforms for event-processing
systems, including various CEP platforms, but there is
currently no standardised way of describing event types and
event pattern types, and thus no standardised method for
interchange of event pattern instances between systems [2].

The main contribution of this paper is in proposing a
common language for consistently describing the event

pattern types or event pattern instances implemented by or
required by different systems. This in turn facilitates the
definition of wire formats that can be consistently produced
and consumed by those systems. We propose a meta-model
defining key concepts and their relationships needed to
precisely describe events, event pattern occurrences, event
pattern types and other supporting concepts. The aim of this
meta-model is to support interoperability between people
involved in the design, development and integration of event
processing systems, as well as interoperability between
systems exchanging information. Such a meta-model can
also provide the basis for the development of specific
domain models, e.g. for finance, health, emergency
management, utilities, etc., leveraging the power of model-
driven development engineering techniques, and supporting
tools such as Eclipse Modelling Framework [3].

The primary audience of this paper is computer scientists,
solution architects, integrators and implementers involved in
developing real-time analytics solutions. The ideas can be
also of value for data scientists, analysts and researches
involved in studying data in particular application domains,
such as researchers involved in financial market analysis as
discussed in [4] [5]. These subject matter experts can work
together with computer scientists in defining rules that
specify relationships between event occurrences of interest.
This was indeed the approach taken in performing the
finance case study described at the end of the paper.

This paper is structured as follows. The following section
presents the motivation for this work arising from new
opportunities and challenges related to real-time analytics,
with particular emphasis on supporting business analytics
and data science requirements. Section III introduces the
foundational concepts for describing event patterns including
events, event pattern types and event pattern occurrences.
Section IV formalises the concepts though an event pattern
meta-model. Section V provides a case study introducing
several event pattern types from the financial market trading
(equity) domain. Section VI describes how a set of pattern
types have been implemented using a specific CEP engine,
EventSwarm [6][7] to support researchers in finance domain.
Section VII summarises key findings and describes our
future work.

II. MOTIVATION
This paper is motivated by the need to better support

researchers and data scientists in the finance domain who are
interested in discovering important relationships between
trading events. The data scientists need a fast and flexible

way of identifying and defining new event pattern types in
order to support brokers and other interested market
participants in detecting opportunities or threats associated
with market trading. For example, brokers might be
interested in detecting unusual spikes in price or volume of a
specific stock, or detecting particularly poor or outstanding
performance of a stock compared to others in its sector.

Due to the high velocity of trading, one needs an
automated way to detect trading event pattern occurrences as
well as an easy way to define the corresponding event pattern
types. The complexity of financial market behaviour also
requires that such pattern types support a wide range of
pattern constructs, including mathematical, statistical and
logical relationships between and across events, often within
a specific time window of interest.

In the past, many such systems were developed
commercially, either in house or by specialised vendors such
as Apama [8], and primarily used by direct market
participants such as investment banks, brokerage houses and
stock exchanges. With the widespread availability of cloud
services as a mechanism for delivery, there is an increasing
interest from financial market researchers and the broader
investment community to look at events signifying
opportunities or threats.

Additionally, a number of regulatory organisations have
recently introduced rules requiring listed companies to
monitor potential causal relationships between social media
postings and movement in company price or trading volume
on a stock exchange. This is needed to protect investors from
potentially damaging price manipulation or leaks of
confidential information through social media postings. In
this case one needs to monitor events coming from different
sources, including market feeds and various social media
channels. For example, the Australian Stock Exchange
(ASX) recently published new guidelines for continuous
disclosure, known as Guidance Note 8 [9]. These guidelines
suggest that company executives, in particularly company
secretaries of ASX listed companies, need to implement
continuous monitoring of social media in order to detect and
act upon social media postings which could have a material
effect on the stock price of the company.

To facilitate the automation of financial data analysis, our
previous research work proposed the ADAGE framework [5],
in which there are three types of services (see Figure 1) that
can be flexibly composited into a workflow to support event
processing for data analysis, namely:
– Event import service: the service to extract and process

native event data from event data repositories. (Input:
events; Output: events).

– Event processing service: the service to transform
imported event data in a variety of ways; examples are
removal of duplicate events, handling data quality
issues, combining two sets of processed data together;
each of this transformation is essentially producing
new information which can be regarded as a complex
event [1] (Input: events; Output: (complex) events).

– Event export service: the service to transform
processed data into alternate formats suitable for
external application use. For example, processed data

can be converted into comma separated value (CSV)
files so that it can be imported into spreadsheets; also,
charts can be created from processed data and saved as
image. (Input: events; Output: csv / image).

Simple
Events

Complex
Events

Event
Processing

Service
CSV File; or

Graph
Visualisation

Event Data
Repository

Event
Import
Service

Event
Export
Service

Figure 1: ADAGE processing

One significant limitation of ADAGE is that complex

events generated by an "event processing service" do not
contain detailed information regarding how they are
generated, i.e. what pattern occurrence was detected
signifying this complex event, and which simple events
constitute the complex event. Further, since the services in
the ADAGE framework are developed by different people,
and they use various techniques (e.g. different programming
languages) during the development, it is almost impossible to
track the process of detecting a complex event.

In order to address this limitation we refined the ADAGE
framework by splitting the event processing services into
two separate type of services (Figure 2):
– Event pattern detection service: the service to detect

occurrences of event patterns. (Input: events; Output:
event pattern occurrences)

– Event pattern processing service: the service to process
event pattern occurrences and convert them to complex
events with all detailed information of the generation
of the complex events, i.e. the final output required by
the user. (Input: event pattern occurrences; Output:
events).

Simple
Events

Complex
Events

Event
Pattern

Detection
Service

CSV File; or
Graph

Visualisation

Event Data
Repository

Event
Import
Service

Event
Export
Service

Event Pattern
Occurrences

Event
Pattern

Processing
Service

a common event
pattern meta-model

Figure 2: Extended ADAGE: CEP capability

With this refinement, the extended ADAGE framework
has the ability to capture detailed information about the
complex events, while retaining the original advantages, e.g.
automation of data analysis, and the flexibility of building
workflows. Further, the stream-oriented delivery of events to
the event pattern processing service allows for connection of
real-time data streams and consequently real-time analytics.

In order to capture complex event details we propose a
common event pattern meta-model, which is described in
Section IV. This meta-model benefits both developers and
researchers. For event processing service developers, it is
easier to implement services without thinking about how to
represent the event pattern occurrences detected. For event
export service developers (e.g. visualisation developers), the
event pattern occurrences provide further valuable

information including the details of how the complex events
are constructed. For external developers who want to call
these services (e.g. to develop a rule-based system that needs
to detect event pattern occurrences), the model provides the
basis for defining a wire format for the event pattern
occurrences. For researchers, with a more informative output
such as visual representation based on the event pattern
meta-model, the tracking of complex event generation is
facilitated. In addition, if two services that require data
interchange have different data models, the common meta-
model makes it easier to relate those models and support
different wire formats that reflect the same underlying meta
model.

The work illustrated in this paper extends the results
reported for the ADAGE framework in [4][5] in two ways:
firstly, it provides extended analysis features to ADAGE
owing to the ability to define trading patterns of interest and
to capture how complex events matching those patterns are
constructed from the input events; secondly, it allows real-
time implementation of event pattern detection. Through
applying these capabilities to stock market data and other
relevant data sources, market participants can detect current
or emerging insights to support trading and operational
decisions.

III. FOUNDATIONAL CONCEPTS FOR BEHAVIOUR
This section introduces several fundamental concepts that

will be formalised in the context of an event pattern meta-
model in next section. They take into account relevant
concepts from the RM-ODP standard [10], which provides
precise definitions of foundational behavioural concepts such
as actions, interactions, events and services in distributed
systems, augmented with the definition of event patterns
described in [1] and [2].

Note that the RM-ODP standard includes the description
of various behavioural constraints, including deontic policy
constraints [11][12], which are important for monitoring
conditions associated with business policies [16]. These are
not addressed in this paper but are described in detail
elsewhere [11][13][19]. The fundamental concepts for
behavior are required to ensure establishing a common
understanding about modelling and downstream
implementation of distributed systems and applications. This
agreement on standard concepts is a necessary condition to
ensuring interoperability among people and systems, in an
open environment.

A. Action
RM-ODP defines action as ‘something that happens’.

Every action of interest for modelling purposes is associated
with at least one object. The set of actions associated with an
object is partitioned into internal actions and interactions. An
internal action always takes place without the participation of
the environment of the object. An interaction takes place
with the participation of the environment of the object. Note
here that “Action” means “action occurrence” not “action
type”. That is to say, different actions within a specification
may be of the same type but still distinguishable in a series
of observations. Depending on context, a specification may

express that an action has occurred, is occurring or may
occur [10].

B. Event
Event is described as ‘the fact that an action has taken

place’. When an action occurs, the information about the
action that has taken place is captured in an event, and that
event becomes part of the state of the system. An event may
subsequently be communicated in interactions and this
communication is called an event notification: it carries the
information about the action from the object that performs or
observes it to other objects that have a need to take action as
a result of it [10].

C. Event Pattern Types and Ocurrences
Our interest is in using event processing systems to

facilitate analytics activities, such as identifying data quality
issues, performing exploratory analytics and ultimately
developing an infrastructure to support predictive analytics
in real time. The use of a special kind of event processing
systems, i.e. Complex Event Processing (CEP) systems,
allows the application of sophisticated techniques to define
and detect interesting combination of events that have
specific business meaning. A definition of such combination
of events is referred to as an event pattern type and a CEP
engine is thus utilised to detect occurrences of specific
combinations of events that satisfy event pattern types. Such
a combination is referred to as an event pattern occurrence.
It is typically the combination itself, rather than individual
events that carry business semantics.

An event pattern type is defined as a ‘template specifying
one or more combinations of events’. Given any collection
of events, a CEP detection engine can find one or more
subsets of those events that match a particular pattern type
and thus satisfy this pattern type [2].

IV. EVENT-PATTERN META-MODEL
This section provides further elaboration of the concepts

introduced in the previous section, using a UML meta-
model, depicted in Figure 3. The structure and informal
semantics of events and event patterns is thus expressed as a
combination of abstract syntax of the meta-model and
narrative definition of the semantic concepts. Note that the
concepts proposed as part of the RM-ODP framework have a
formal semantics [12], but this is not discussed in this paper.
There have been some other attempts for providing
mathematic and logic based formalism for event pattern
types and their detection, most notably [15]. Such formalism
of detection semantics can constrain expressiveness,
particularly in relation to parallel behaviour and time,
without necessarily assisting in interoperability. Through
providing narrative “hooks” our model allows formalism to
be added as required to support implementation.

This meta-model represents a conceptual model focusing
on that part of complex event processing that is concerned
with describing events and event patterns (including event
pattern types and event pattern occurrences). The meta-
model does not capture other elements more related to the
processing of events such as filtering, event aggregation,

channels for notifications etc. These are necessary elements
for deploying any CEP implementation, but the focus of this
paper is on the use of CEP event pattern matching as a data
analysis or machine analytics technique.

A. Event
As introduced in section III.B, the concept of event

signifies the fact that some action has happened in the real
world. In an information system, an event is thus a record of
some action that occurred in the real-world and it captures
information about this occurrence. An event conforms to an
event type as defined in the following section.

B. Event type
An event type characterizes a set of events that share

particular properties. Typically, this includes information
such as:
– when the action occurred, e.g. at particular point in

time (instantaneous) or during particular interval (in
which an action has start and end time associated with
its occurrence)

– what action the event signifies, e.g. trade buy or sale,
– the source, that is where the action happened or was

observed, e.g. on particular network, device, or
particular software component

– event id, typically assigned by an information system
when it creates or receives the events

– other application- or domain-specific data.
We model event type as an abstract type with two

concrete classes: simple event type and complex event type.
These are used to distinguish two key properties of event
types and their corresponding instances. The following
sections describe these two event types in terms of their
components and corresponding instances.

C. Simple Event
A simple event is an event that signifies an occurrence of

a single action. While in many cases a simple event is
instantaneous, e.g. News event, it can also have duration, e.g.
Intraday trade event.

A simple event typically has data modelled as an
AtomicData element.

D. AtomicData
This modelling element is a generic attribute that

captures business related data associated with an event, e.g.
information about price of stock trade, volumes of trade etc.
It is referred to as ‘atomic’ to signify the fact that event
captures information about single action occurrence.

E. AtomicDataType
This modelling element specifies the type of

AtomicData, defined by the format of data (e.g. CSV) and
schema for the data (e.g. column definitions).

F. Functor
The concept of Functor is inspired by the Haskell

functional programming language and is introduced to
provide access to relevant information captured in an event
regardless of its wire format or schema. For example there

may be events capturing stock related announcements from
different data streams, e.g. twitter, ASX, Google news etc,
but we want to extract the relevant stock code in a consistent
way for all streams. Thus we define a functor for each data
source that satisfies a StockCode functor type.

G. Functor Type
Functor Type describes functions over events that return

a value of a particular data type and semantics extracted or
derived from an event instance (Event). Typically the value
is extracted from the AtomicData element of an event,
implying that functor instances are aware of the format and
schema of the AtomicData element. Specific Functor
instances can then be defined to access different data sources
with different formats or schemas such as price or news item
identifiers from providers such as Thomson Reuters. In many
respects a Functor Type is a generalisation of the more usual
notion of “attribute” that allows us to abstract over the way a
CEP implementation accesses data in events, and also focus
our modelling and programming effort on the data necessary
for rule definition. Unused data can be ignored. This is
particularly important for data arriving from different
sources with different schemas and wire formats, as it allows
us to establish relationships across different data streams in
an abstract but unambiguous and implementable manner.

H. Complex Event
A complex event signifies occurrences of a combination

of related events that have some business semantics. A
complex event is used to capture event pattern occurences
that satisfy event pattern types.. An event pattern type
defines relationships between contained events. Note that A
complex event can satisfy multiple event pattern types or
none, so while event pattern occurrence implies complex
event, the reverse is not true. A complex event can also
include another complex event as part of that event
combination.

I. Event Pattern Ocurrence
This concept signifies occurrence of a set of events which

are related through some expression. The form of this
expression is defined by an EventPattern Type.

J. Event Pattern Type
Event Pattern Type concept defines a specific

relationship between events of some business significance.
An Event Pattern Type is used to specify relationship, data
and time constraints across constituent events.

There may be different type of pattern expression
languages, combining mathematical, logical, statistical and
various temporal constructs to define an event pattern. There
are also a number of different event patterns types that were
for example identified in [2].

K. Event Pattern Implementation
An Event Pattern Implementation refers to a specific

implementation of an EventPatternType. One such
implementation described in this paper makes use of the

concept of a pattern directed acyclic graph or P-DAG, as
shown in Figure 4 and described next.

L. Pattern DAG (P-DAG)
When designing the implementation of event pattern

types, we consider the constituent events in an event pattern
type, and the dependency between constituent events,
including the temporal order of events, as the key factors.
Thus, we adopt a directed acyclic graph called P-DAG
(Pattern DAG) as a specific implementation of an event
pattern type. P-DAG is thus used as an expression for
specifying occurrences of a certain event pattern type. The
advantage of P-DAG is that it can capture constituent events
in an event pattern type as well as the dependencies between
them. This leads to an easy representation of the event
pattern type in a graphical way that is easy to understand for
both developers and end users.

Figure 3: Core CEP meta-model

Formally, a P-DAG instance is defined as a DAG of
Edge Types (E) connecting Node Types (N) as follows:

• P-DAG = < N, E >
• N = <n1, n2, … >

− ni is a set of event(s), ni = <e1, e2, … >
− ei is an event (i = 1, 2, …)

• E = <edge1, edge2, … >
− edgei is an edge between an ordered pair of

nodes
− edgei is defined by the ordering semantics

(source, target and the ordering option)
− source and target are two nodes in the P-DAG

instance, which specify the order of two nodes

− ordering options specifies additional rules of the
ordering, e.g. the start time of the source node
must be earlier than the start time of target node

Figure 4: Event Pattern Type implementation: PDAG
expressions

To sum up, a node depicts a constituent event in an event
pattern occurrence; an edge represents the ordering
dependencies between nodes (constituent events).

In a P-DAG, N is a non-empty set of nodes depicting all
constituent events in an event pattern occurrence. The
number of events represented by a node is called Node
Cardinality. By default, a node denotes a single event;
otherwise, a box with an annotation indicating the cardinality
of the node will be attached to the box. The cardinality is an
integer range, which can be from 0 to infinity.

V. CASE STUDY
This case study illustrates a number of specific event

pattern rules used in finance research groups and a rule-
based front-end application [14] that invokes EventSwarm.

A. Testing application
Figure 5 shows the implementation of an analytics

application (AA) developed to support researchers/domain
experts interested in experimenting with different event
pattern types.

The application has a Front-End which is a known rule-
based application identified by the researcher organisation.
This Front-End has applied a data model built upon the
proposed meta-model. It plays the role of managing the
process of data analysis. The EventSwarm software
framework is used as an event pattern detection service. This
software framework was introduced in [7] and its use is
described in section VI.B. It is important to note that both the
Front-End component and EventSwarm component
implement concepts that are compliant with the meta-model
introduced in the previous section.

F ront-­‐E nd

The event pattern type to be detected
A/B/C

E ventS warm

IT expert

Implement event pattern types: A, B, C

Data file

Occurrences of the selected event pattern type

B CA

Implemented event
pattern types

Domain expert

Run application

Describe event pattern types
to be implemented

Figure 5: Implementation Environment

The following steps were applied in deploying and

testing the finance event pattern types:
1. A researcher specifies a set of interesting event pattern

types. The specifications of the event pattern types are
described in a natural language in writing or verbally to
an IT expert.

2. The IT expert implements the event pattern types in the
event pattern detection service and makes them
available for invocation by the Front-End application.

3. The researcher invokes the event pattern detection
service exposed via the Front-End. To invoke the event
pattern detection service, the researcher needs to select a
desired event pattern type (e.g. Duplicate dividend rule
with a specific ID) from the list of event pattern types
that have been implemented, and provide a data file to
be analysed (e.g. SGB.csv data set). The Front-End then
passes these parameters to EventSwarm using an HTTP
GET request to a configurable URL. Alternatively, the
researcher can conduct event pattern detection tasks via
the EventSwarm pattern detection service GUI.

4. The EventSwarm engine then returns detected event
pattern occurrences in JSON format reflecting the model
described in IV. Finally, the occurrences are further
processed by the Front-End.

It is worth noting that the results can be both displayed
on the EventSwarm GUI or delivered to a known application
identified by the researcher organisation. This programmatic
delivery is done using an HTTP POST request to a
configurable URL.

Rules are implemented as Ruby classes in a Rails
application at present, but we anticipate developing a domain
specific language or user interface allowing researchers to
define new rules in the future. This domain specific language
will support a limited subset of the possible pattern types that
can be expressed in the model from [7].

B. Event patterns considered
Table 1 describes the event pattern types related to

financial market data that have been identified as candidates
for analysis. There are 24 event pattern types that have been

taken into consideration, of which 14 event pattern types
have been selected for implementation due to the high
interest for the research teams involved (see Table 1). The
rest of the event pattern types considered are of less interest
in this project; and we will implement them as part of our
future work.

C. Results
Experiments were conducted by a researcher with some

assistance of an IT expert. The researcher used the
implemented analytics application (AA) to manage and
conduct data analysis. First, the Front-End was used to
define the processes of three different data analysis scenarios.
They are:
– Detecting occurrences of event pattern type No. 2 (1

event pattern type involved)
– Detecting occurrences of event pattern types No. 1-7

(Handling data quality issues of dividend events; 7
simple event pattern types involved)

– Detecting occurrences of event pattern types No.8, 10-
14 (Calculating earnings; 6 more sophisticated event
pattern types involved)

The same analysis processes were implemented as a local

bespoke program for comparison purposes. The researcher
then executed these three analysis processes in AA and in the
bespoke program respectively and inspected the results. For
all the three scenarios, the analysis processes were conducted
successfully with identical results. This indicates that the AA
performed well and yielded the same results. Most
importantly, the interoperability between the Front-End and
EventSwarm was ensured due to the fact that the underlying
data models in both the Front-End and EventSwarm are built
on the same meta-model.

Table 1: Implemented event pattern types

 Name Event Pattern Description

1 Dividend
event An event is a "Dividend" event.

2 Duplicate
Dividends

Two events with Type "Dividend" have the
same timestamp, the same "Div Amt." and

the same "Div Ex Date".

3

Missing
EOD

Event on
Dividend
Ex Date

No "End Of Day" event exists with "Div Ex
Date" of a "Dividend" event as the

timestamp.

4

Div
Missing
Div Amt

or Ex Date

An event with the type "Dividend" has null
or empty value in the field "Div Amt." or

"Div Ex Date".

5

Dividends
with

Different
Div IDs

A pair of duplicate dividends (pattern type
No. 4) have different "Div Mkt Lvl ID".

6 Status is
not 'APPD'

A "Dividend" event has a value other than
'APPD' in the field "Payment Status".

7
Delete

Marker is
not '0'

A "Dividend" event has '1' in the field "Div
Delete Marker".

8
Earning

before End
Of Day

E -> EOD
An event with type “Earning” (E)

happens before an event with type “End Of
Day” (EOD).

(Find only one closest occurrence for
each EOD if it exists.)

9

12-month
Earning

before End
Of Day

E12 -> EOD
An event with type “Earning” (E12) happens

before an event with type “End Of
Day” (EOD) with:

• The “EPS Period Length” of both E12 is
12

(Find only one closest occurrence for each
EOD if it exists.)

10

Two 6-
month

Earnings
before End

Of Day

E6(2) -> E6(1) -> EOD
Two events E6(1) and E6(2) with type

"Earning" (E6(2) before E6(1)) happen before
an event with type “End Of Day” (EOD)

with:
• The “EPS Period Length” of

both E6(1) and E6(2) is 6;
• E6(2).epsEndDate + E6(2).epsLength =

E6(1).epsEndDate
• Find only one closest occurrence for each

EOD if it exists.

11

Two 3-
month

earnings
and one 6-

month
earning

before End
Of Day

E3(2) -> E3(1) -> E6 -> EOD
Three events with type “Earning”

(E3(2) before E3(1) before E6) happen before an
event with type “End Of Day” (EOD) with:
• The “EPS Period Length” of E3(2) and

E3(1) is 3; The “EPS Period Length” of E6
is 6;

• E3(2).epsEndDate + E3(2).epsLength =
E3(1).epsEndDate

• E3(1).epsEndDate + E3(1).epsLength =
E6.epsEndDate

• Find only one closest occurrence for each
EOD if it exists.

12

One 3-
month
earning

and one 9-
month
earning

before End
Of Day

E3 -> E9 -> EOD
Two events E3 and E9 with

type “Earning” (E3 before E9) happen before
an event with type “End Of Day” (EOD)

with:
• The “EPS Period Length” of E3 is 3 and

The “EPS Period Length” of E9 is 9;
• E3.epsEndDate + E3.epsLength =

E9.epsEndDate
• Find only one closest occurrence for each

EOD if it exists.

13

Four 3-
month

earnings
before End

Of Day

E3(4) -> E3(3) -> E3(2) -> E3(1) -> EOD
Four events E3(1), E3(2), E3(3), and E3(4)

with type “Earning” (E3(4) before E3(3) before
E3(2) before E3(1)) happen before an event

with type “End Of Day” (EOD) with:
• The “EPS Period Length” of E3(1), E3(2),

E3(3), and E3(4) is 3;
• E3(i).epsEndDate + E3(i).epsLength = E3(i-

1).epsEndDate (i=2,3,4)
• Find only one closest occurrence for each

EOD if it exists.

14

One 9-
month
earning

and one 3-
month
earning

before End
Of Day

E9 -> E3 -> EOD
Two events E3 and E9 with type “Earning”
(E9 before E3) happen before an event with

type “End Of Day” (EOD) with:
• The “EPS Period Length” of E3 is 3 and

The “EPS Period Length” of E9 is 9;
+ E9.epsLength = E3.epsEndDate

• Find only one closest occurrence for each
EOD if it exists.

The researcher and the Front-End developer have
reported a number of advantages from driving the detection
of event pattern occurrences using the concepts from the
meta-model. In particular, the meta-model facilitates
portability, allowing the Front End to consume the output of
EventSwarm and thus leverage its ability to detect certain
types of patterns without being locked with a particular EPS.
Indeed, the invoking platform can call other EPSs to detect
other types of patterns without the need to adapt to the output
type specified by that EPS. Further, the EventSwarm
platform provides additional implementation benefits,
including:
– simple and easy-to-use API: developers can easily

integrate EventSwarm into their own applications.
– very fast and efficient complex event processing. The

average speed of processing is more than 10,000 events
per second (remote invocation time inclusive) on
Thomson Reuters Tick History daily data provided by
Sirca. This is almost as fast as a bespoke program
dedicated to a fixed event processing process and
executed locally.

– implementing event pattern types is generally very fast.
It normally takes less than a day to implement 5 event
pattern types.

– JSON as the output format is well structured and it is
convenient for developers to parse and further analyse
the results.

Some limitations include:
– Users are not able to define event pattern types via the

GUI or an API, and thus the development cycle largely
depends on the availability of the IT expert.

– The communication between the researcher and the IT
expert can be very intensive so that the definition of
event pattern types described by the researcher can be
understood accurately by the IT expert. Any failure in
the communication may cause issues that will be hard
to diagnose in the future.

VI. IMPLEMENTATION
A. Front-End Application

The front-end application provides the capability to run
event processing rules to process financial market data, and
to manage these rules in an incremental way. The GUIs and
all business logic of the application are implemented using
Java. The rules are stored in a PostgreSQL database. The
front-end application sends requests to EventSwarm using
RESTful invocations and receives the responses encoded
using the wire format described in section D below.

B. EventSwarm
The EventSwarm implements the meta-model concepts

from section IV and is used as the pattern detection service.
It provides both a user interface and a RESTful interface for
matching patterns against data sets. Upon completion of
processing, it displays the result on the user interface and
passes the result back to the calling application using an
HTTP POST request containing matches encoded using the
wire format described in section D below.

The EventSwarm service is implemented using Ruby on
Rails on the JRuby platform. The specified patterns were
coded in Ruby, and are called in response to requests from a
user or external application. The Ruby “patterns” are
primarily constructors that build a CEP graph using
EventSwarm core constructs. These constructs are provided
through the EventSwarm core Java library with convenient
Ruby wrappers to facilitate rapid development. Pattern
matching execution primarily occurs in Java for maximum
performance, although some elements of the earnings
patterns are implemented in Ruby. Encoding of results into
the wire format and sending is also implemented in Ruby.

Patterns are matched in an EventSwarm application by
feeding events through one or more processing graphs that
select matching events or sets of events. Processing graph
nodes can include sliding windows, filters, splitters
(powersets) and abstractions. Abstractions are values or data
structures calculated or constructed from the stream of
events, for example, the EventSwarm statistics abstractions
maintains sum, mean, variance and standard deviation over
numeric data extracted from events in a stream. Events can
be added to and removed from the stream by a node,
although downstream nodes can choose to ignore removals.
For example, a sliding window works by instructing
downstream nodes to remove events that have “fallen out” of
the window.

C. Rule implementation
The rules are implemented using four common designs

and one pattern-specific design as described below.
1) Simple filters

Some rules were implemented using a simple, single-
event filter that collected events matching one or more static
field values. For example, the “dividend deleted” rule
matched events with a type of “Dividend” and a value of “1”
in the “Div Delete Marker” field.

2) Duplicate detectors
Other rules needed to detect duplicates in the data stream.

Duplicate detection can have high memory and processor
overheads because it is necessary to hold a potentially
unbounded set of “candidates”, and each new event has to be
compared with all of the preceding candidates. Thus we use
a candidate filter to minimise the number of candidates, then
use the EventSwarm DuplicateEventExpression to
compare candidates with new events using one or more event
comparators. An example of such a duplicate detector is the
“Duplicate dividend” pattern, which filters the set of
candidates so that only “Dividend” events are considered,

and then compares candidate stock code, amount and div-ex
date to identify duplicates.

It is important to note that if we were analysing a
continuous stream, we would also use a sliding time window
or sliding N-sized-window to avoid infinite buffering of
candidates. Use of such sliding windows can decrease the
accuracy of pattern matching because some matches might
be missed, but in most practical scenarios, there is no loss of
accuracy because duplicates are close together in the data
stream. For this implementation, we relied on the finite size
of the data sets analysed rather than using a sliding window.

3) Simple event sequence
Two rules matched a simple sequence of events, with

each event in the sequence satisfying certain static
conditions. These rules were implemented using the
EventSwarm SequenceExpression with simple attribute
matchers for each event in the sequence. For example, the
“Earnings event before EOD” used SequenceExpression
to look for an “Earning” event followed by an EOD event.
Note that normally, this will generate a match for any
sequence that satisfies the sequence expression components,
meaning an EOD event would be paired with all previous
earnings events. To ensure that EOD events were only paired
with the most recent earnings event, only one candidate
earnings event was held (i.e., a sliding window of size 1).

4) Conditional event sequence
A number of sequence patterns were implemented where

the events of each candidate sequence needed to satisfy an
additional condition defining necessary relationships
between the events in the sequence. In EventSwarm, we
implement this by first matching the sequence, then applying
the inter-event condition as a filter on the candidate sequence
matches. For example, the “Bi yearly earnings before EOD”
required that the two earnings events that started the
sequence were contiguous in time. This was matched by
looking for a sequence of two 6-month earnings events
followed by an EOD event, then filtering the resulting
sequences to match only those sequences where the earnings
events were contiguous in time.

A duplicate event filter was used in front of these
expressions to ensure that duplicate earnings events were
removed and only a single match was generated for each
earnings period.

5) Event not present in history
The “Dividend without a valid EOD for the div ex date”

pattern required that we identify cases where a “Dividend”
event div-ex date (the end date of the period for which the
dividend was paid) did not have a valid EOD event for the
div-ex date. The “Dividend” event normally occurs within a
month of the div-ex date. To implement this pattern, we
maintained an EventSwarm sliding time window to hold the
last 31 days of valid EOD events (i.e. at least one month),
then for each matching “Dividend” event, the time window
was searched to determine if it contained an EOD event that
matched the div-ex date.

Some elements of this expression were implemented in
Ruby because no combination of existing EventSwarm
components could implement the relatively obscure
semantics. Note that this pattern implies negation, which is

not easily implemented in CEP systems generally. See the
evaluation in section E further discussion of negation.

D. Wire format
The wire format used to express patterns is a direct

reflection of the P-DAG model described in Section IV. It
uses JSON [17] for simple and efficient cross-platform
processing. A sample of a JSON file that saves event pattern
occurrences is shown in Figure 6. Each JSON file contains a
number of event pattern occurrences that match a particular
event pattern type. Each occurrence contains a description of
the event pattern type and a P-DAG instance, which consists
of a number of nodes and edges. Each node consists of the
event type, id, source, start time, end time and a list of other
atomic data. Each edge consists of ordering, source and
target.

Figure 6: Sample JSON file of Pattern Occurrences

E. Evaluation
The implementation of the patterns using EventSwarm

was mostly straightforward and required only minimal
programmer effort. It did, however, continually highlight
complex semantic issues in pattern specification and
implementation. Key examples are identified in the
following subsections.

1) Timestamp precision and ordering
Some of the data sets processed had timestamps with a

precision of 1 day (i.e. no time component). Thus strict
“before” relationships in patterns would not fire unless dates
were different. For example, if one searched for a dividend
announcement followed by an end-of-day event, the pattern
would only match end-of-day events on subsequent days.
This is a general problem of precision in timestamps:
sequence patterns can only match for events separated by a
period greater than or equal to the timestamp precision. So if
timestamp precision is 1 second, events separated by less
than 1 second cannot be distinguished in time and thus
cannot be sequenced.

2) Bounding candidate matches
A pattern that requires two or more events to match (e.g.

A AND B) requires the solution to hold candidate A matches
for subsequent pairing with B events. For a continuous data
stream, an explicit or implied bound is required to make the
pattern scalable, because each A event needs to be held as a
candidate match until it can be determined that no further B

events are possible. Thus to make the required storage finite,
we need a bound on the number of A events held as
candidates (e.g. in the last hour) or through an indicator that
implies no further B events are possible (e.g. end-of-data-
set).

3) Negation
Negation can be particularly difficult to implement in

CEP systems. Consider the example NOT(A). Over a
continuous data stream, at what point can we assert that A
has not occurred? Similar to the problem of candidate
matches for sequence or conjunction queries, we need an
explicit or implied bound for the evaluation semantics. For
example, we could evaluate the pattern at regular intervals
(i.e. every hour) or evaluate it over a limited time window
(e.g. in the last hour). A further complication with negation
is in deciding what to report as the match. What is the pattern
matched by NOT(A)? Is it the set of events that has
occurred? Or is it an empty result? This question becomes
even harder to answer when conjunctions are used with
negation. Thus a general pattern specification language that
permits negation must provide mechanisms and semantics to
address these issues.

4) Edge semantics
The P-DAG model for event pattern occurrences includes

edges between events. These are defined in terms of the
events and in this implementation, the edges reflect a strict
“before” relationship between events. This is simple to
implement and very general because it bears no relationship
to the pattern specification. At present, the wire format also
does not identify node types. Thus it can be difficult for a
researcher to determine which event matched which element
of a pattern without re-evaluating the pattern constraints
locally (i.e. outside of EventSwarm).

It is anticipated that researchers defining pattern types
will need to associate events with “placeholders” in the
pattern type. For example, if a pattern A -> B AND A’ -> C
(A == A’) is evaluated against a data stream, the researcher
needs to know which event matched A, A’, B and C
respectively. To do this requires the association of explicit
edge semantics with the pattern specification and/or explicit
labelling of nodes, assuming re-use of node types (e.g. A,
A’). This adds considerable complexity to pattern
specification, the implementation and the wire format. The
required semantics, likely complexity and implementation
effort are currently being investigated.

VII. CONCLUSIONS
This paper has introduced a minimal set of modelling

concepts related to the specification of event pattern types
and event pattern occurrences. The meta-model was
developed based on the foundational behavioural concepts
from the RM-ODP standards, augmented with a number of
concepts needed to support event pattern matching semantics
for real-time analytics applications. We have shown that
these concepts are sufficient to represent and implement a
class of business analytics solutions for a number of use
cases in finance related to market trading. In particular, the
CEP EventSwarm framework, which is compliant with these

concepts, allowed quick deployment of new rules, even of
significant complexity, while delivering high performance
execution of these rules in real-time. The software was
deployed in a cloud environment and its services were
invoked through the Front End application, which is also
compliant with the meta-model.

This case study has also revealed a number of semantics
difficulties inherent to many CEP applications. In particular,
the examples from section VI.E suggest that developing a
general-purpose pattern language has limited value for
researchers due to the inherent complexity of pattern
specification and the difficulty of scaling without explicit
bounds. We believe that researchers would be better served
by limited, domain-specific pattern languages with a
tractable matching semantics pre-determined (e.g. implied
bounds, sequence and negation semantics that reflect natural
data constraints, node labelling). The implication is that
unless an event processing domain is strictly bounded, the
complexity of an adequate pattern language is high enough
that programmers will be required to implement patterns
regardless of the language syntax and semantics.

There might be some value for programmers in using a
general-purpose pattern language rather than Ruby or similar
OO/procedural languages, but the development of such a
language is a large and complex body of work. Witness both
the complexity and limitations of the many language choices
in this domain discussed in [18]. The approach applied by
EventSwarm, which is to make core constructs available in a
general purpose programming language, provides agility,
extensibility and accessibility. In particular, it allows existing
application development frameworks like Rails to be used in
the construction of CEP applications. The native availability
of database, user interface, testing and deployment
capabilities, coupled with the wide availability of third-party
modules makes this a compelling approach to building
robust, usable and production-quality applications.

It should be noted that the semantic issues identified
cannot be fully expressed in the recent formalism published
in [15], justifying our decision not to capture formal
detection semantics in the meta-model at this point in our
work. Our experience from this implementation, however,
will help in ensuring that future formalisation and domain
languages have adequate expressiveness.

In future we plan to implement a full set of rules listed in
section V.B. We also plan to look at more complex event
pattern occurrences related to cross-correlation between
stock market events and the social media postings, in order
to be able to develop new insights into relation between
streams of events coming from different sources. We will
continue to monitor developments in event pattern
formalisms, and leverage these developments to create
suitable and tractable domain specific languages for pattern
definition.

ACKNOWLEDGEMENTS
We would like to thank the Smart Services Cooperative

Research Centre in Australia for sponsoring our research
project and Sirca for providing data used in the case study.

REFERENCES
[1] D. Luckham, The Power of Events: An Introduction to Complex

Event Processing in Distributed Enterprise Systems. MA, USA:
Addison Wesley Professional, 2002.

[2] O. Etzion and P. Niblett, Event Processing in Action: Manning
Publications Co., 2011.

[3] http://eclipse.org/modeling/emf/
[4] Yao, L. and Rabhi, F. A. (2014), Building architectures for data-

intensive science using the ADAGE framework. Concurrency
Computat.: Pract. Exper.. doi: 10.1002/cpe.3280

[5] Rabhi FA, Yao L, Guabtni A. ADAGE: a framework for supporting
user-driven ad-hoc data analysis processes., Computing 2012;
94(6):489–519.

[6] http://www.deontik.com/Products/EventSwarm.html
[7] A. Berry, Z. Milosevic: Real-Time Analytics for Legacy Data

Streams in Health: Monitoring Health Data Quality. IEEE EDOC
2013 conference, p. 91-100, 2011

[8] http://www.softwareag.com/corporate/products/apama_webmethods/a
nalytics/overview/default.asp

[9] www.asx.com.au/documents/about/guidance-note-8-clean-copy.pdf
[10] ITU-T/ISO, “ITU-T X.902 | ISO/IEC 10746-2, Information

Technology Open Distributed Processing Reference Model –
Foundations”, 2010.

[11] ITU-T/ISO, “ITU T Rec. X.911 | ISO/IEC 15414: Enterprise
language DIS for ITU T Recommendation X.911| ISO/IEC 15414
Amd 1”, 2013.

[12] ISO/IEC IS 10746-4, Information Technology — Open Distributed
Processing — Reference Model: Architectural Semantics, 1998. Also
published as ITU-T Recommendation X.904.

[13] P.F. Linington, Z. Milosevic, A. Tanaka and A. Vallecillo, Building
Enterprise Systems with ODP, An Introduction to Open Distributed
Processing, Chapman & Hall/CRC Press, 2011.

[14] Chen, W. & Rabhi, F. A., An RDR-Based Approach for Event Data
Analysis. In Proceedings of 3rd Australasian Symposium on Services
Research and Innovation (ASSRI’13).

[15] Sylvain Hallé, Simon Varvaressos: A Formalization of Complex
Event Stream Processing. EDOC 2014: 2-11

[16] OMG, “Semantics of Business Vocabularies and Rules”, Available at
http://www.omg.org/spec/SBVR/

[17] ECMA, “The JSON Data Interchange Standard”, http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf

[18] G. Cugola and A.Margara, “Processing Flows of Information: From
Data Stream to Complex Event Processing”, ACM Computing
Surveys, Vol. 44 No. 3, June 2012.

[19] Guido Governatori, Zoran Milosevic, Shazia Sadiq: Compliance
checking between business processes and business contracts. EDOC
2006.

