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Abstract — This paper describes key modelling concepts for 
events, event patterns and related concepts needed to develop a 
distributed software framework for real-time business 
analytics. These concepts are specified by means of a minimal 
meta-model, whose implementation can enable better 
interoperability between different event processing systems. 
This in turn can support better distributed, collaborative 
analytics applications in many domains. We show an 
implementation of our solution approach using a case study of 
several business analytics problems in finance. 

Complex Event Processing; real-time analytics; finance 
applications. 

I.  INTRODUCTION 
The growing availability and access to data offers 

expanding opportunities for creating new insights through 
analytics. These new insights can be developed by applying 
various analytics techniques and appropriate tools to 
discover and communicate meaningful patterns in data. Our 
focus is on patterns of event instances as they occur in real 
time, which we refer to as event pattern occurrences. An 
event pattern occurrence signifies an occurrence of a 
particular set of events that satisfy the relationship, data and 
time constraints defined in an event pattern type. Examples 
include relationships between observations of patient 
condition in healthcare, particular combinations of buy and 
sell events in stock trading or correlation between social 
media postings and stock market activity. Note that the 
discovery mechanisms presented in this paper can also be 
applied to historical data, supporting a continuum of pattern 
detection across history and into the future for a set of data 
sources. 

In a big data context, the detection of event pattern 
occurrences requires special technology infrastructure and 
techniques, such as complex event processing (CEP) [1]. 
CEP technology allows detection of event pattern 
occurrences against events arriving with high velocity, often 
from multiple data sources. CEP technology can be thus 
regarded as a form of machine analysis focused on detection 
of meaningful event occurrences, and which can be 
augmented with statistical analysis to support predictive 
capability. There are many platforms for event-processing 
systems, including various CEP platforms, but there is 
currently no standardised way of describing event types and 
event pattern types, and thus no standardised method for 
interchange of event pattern instances between systems [2].  

The main contribution of this paper is in proposing a 
common language for consistently describing the event 

pattern types or event pattern instances implemented by or 
required by different systems. This in turn facilitates the 
definition of wire formats that can be consistently produced 
and consumed by those systems. We propose a meta-model 
defining key concepts and their relationships needed to 
precisely describe events, event pattern occurrences, event 
pattern types and other supporting concepts. The aim of this 
meta-model is to support interoperability between people 
involved in the design, development and integration of event 
processing systems, as well as interoperability between 
systems exchanging information. Such a meta-model can 
also provide the basis for the development of specific 
domain models, e.g. for finance, health, emergency 
management, utilities, etc., leveraging the power of model-
driven development engineering techniques, and supporting 
tools such as Eclipse Modelling Framework [3].  

The primary audience of this paper is computer scientists, 
solution architects, integrators and implementers involved in 
developing real-time analytics solutions. The ideas can be 
also of value for data scientists, analysts and researches 
involved in studying data in particular application domains, 
such as researchers involved in financial market analysis as 
discussed in [4] [5]. These subject matter experts can work 
together with computer scientists in defining rules that 
specify relationships between event occurrences of interest. 
This was indeed the approach taken in performing the 
finance case study described at the end of the paper. 

This paper is structured as follows. The following section 
presents the motivation for this work arising from new 
opportunities and challenges related to real-time analytics, 
with particular emphasis on supporting business analytics 
and data science requirements. Section III introduces the 
foundational concepts for describing event patterns including 
events, event pattern types and event pattern occurrences. 
Section IV formalises the concepts though an event pattern 
meta-model. Section V provides a case study introducing 
several event pattern types from the financial market trading 
(equity) domain. Section VI describes how a set of pattern 
types have been implemented using a specific CEP engine, 
EventSwarm [6][7] to support researchers in finance domain. 
Section VII summarises key findings and describes our 
future work. 

II. MOTIVATION 
This paper is motivated by the need to better support 

researchers and data scientists in the finance domain who are 
interested in discovering important relationships between 
trading events. The data scientists need a fast and flexible 



way of identifying and defining new event pattern types in 
order to support brokers and other interested market 
participants in detecting opportunities or threats associated 
with market trading. For example, brokers might be 
interested in detecting unusual spikes in price or volume of a 
specific stock, or detecting particularly poor or outstanding 
performance of a stock compared to others in its sector. 

Due to the high velocity of trading, one needs an 
automated way to detect trading event pattern occurrences as 
well as an easy way to define the corresponding event pattern 
types. The complexity of financial market behaviour also 
requires that such pattern types support a wide range of 
pattern constructs, including mathematical, statistical and 
logical relationships between and across events, often within 
a specific time window of interest. 

In the past, many such systems were developed 
commercially, either in house or by specialised vendors such 
as Apama [8], and primarily used by direct market 
participants such as investment banks, brokerage houses and 
stock exchanges. With the widespread availability of cloud 
services as a mechanism for delivery, there is an increasing 
interest from financial market researchers and the broader 
investment community to look at events signifying 
opportunities or threats. 

Additionally, a number of regulatory organisations have 
recently introduced rules requiring listed companies to 
monitor potential causal relationships between social media 
postings and movement in company price or trading volume 
on a stock exchange. This is needed to protect investors from 
potentially damaging price manipulation or leaks of 
confidential information through social media postings. In 
this case one needs to monitor events coming from different 
sources, including market feeds and various social media 
channels. For example, the Australian Stock Exchange 
(ASX) recently published new guidelines for continuous 
disclosure, known as Guidance Note 8 [9]. These guidelines 
suggest that company executives, in particularly company 
secretaries of ASX listed companies, need to implement 
continuous monitoring of social media in order to detect and 
act upon social media postings which could have a material 
effect on the stock price of the company. 

To facilitate the automation of financial data analysis, our 
previous research work proposed the ADAGE framework [5], 
in which there are three types of services (see Figure 1) that 
can be flexibly composited into a workflow to support event 
processing for data analysis, namely: 
– Event import service: the service to extract and process 

native event data from event data repositories. (Input: 
events; Output: events). 

– Event processing service: the service to transform 
imported event data in a variety of ways; examples are 
removal of duplicate events, handling data quality 
issues, combining two sets of processed data together; 
each of this transformation is essentially producing 
new information which can be regarded as a complex 
event [1] (Input: events; Output: (complex) events). 

– Event export service: the service to transform 
processed data into alternate formats suitable for 
external application use. For example, processed data 

can be converted into comma separated value (CSV) 
files so that it can be imported into spreadsheets; also, 
charts can be created from processed data and saved as 
image. (Input: events; Output: csv / image). 
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Figure 1: ADAGE processing 

  
One significant limitation of ADAGE is that complex 

events generated by an "event processing service" do not 
contain detailed information regarding how they are 
generated, i.e. what pattern occurrence was detected 
signifying this complex event, and which simple events 
constitute the complex event. Further, since the services in 
the ADAGE framework are developed by different people, 
and they use various techniques (e.g. different programming 
languages) during the development, it is almost impossible to 
track the process of detecting a complex event. 

In order to address this limitation we refined the ADAGE 
framework by splitting the event processing services into 
two separate type of services (Figure 2): 
– Event pattern detection service: the service to detect 

occurrences of event patterns. (Input: events; Output: 
event pattern occurrences) 

– Event pattern processing service: the service to process 
event pattern occurrences and convert them to complex 
events with all detailed information of the generation 
of the complex events, i.e. the final output required by 
the user. (Input: event pattern occurrences; Output: 
events). 
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Figure 2: Extended ADAGE: CEP capability 

With this refinement, the extended ADAGE framework 
has the ability to capture detailed information about the 
complex events, while retaining the original advantages, e.g. 
automation of data analysis, and the flexibility of building 
workflows. Further, the stream-oriented delivery of events to 
the event pattern processing service allows for connection of 
real-time data streams and consequently real-time analytics.  

In order to capture complex event details we propose a 
common event pattern meta-model, which is described in 
Section IV. This meta-model benefits both developers and 
researchers. For event processing service developers, it is 
easier to implement services without thinking about how to 
represent the event pattern occurrences detected. For event 
export service developers (e.g. visualisation developers), the 
event pattern occurrences provide further valuable 



information including the details of how the complex events 
are constructed. For external developers who want to call 
these services (e.g. to develop a rule-based system that needs 
to detect event pattern occurrences), the model provides the 
basis for defining a wire format for the event pattern 
occurrences. For researchers, with a more informative output 
such as visual representation based on the event pattern 
meta-model, the tracking of complex event generation is 
facilitated. In addition, if two services that require data 
interchange have different data models, the common meta-
model makes it easier to relate those models and support 
different wire formats that reflect the same underlying meta 
model. 

The work illustrated in this paper extends the results 
reported for the ADAGE framework in [4][5] in two ways: 
firstly, it provides extended analysis features to ADAGE 
owing to the ability to define trading patterns of interest and 
to capture how complex events matching those patterns are 
constructed from the input events; secondly, it allows real-
time implementation of event pattern detection. Through 
applying these capabilities to stock market data and other 
relevant data sources, market participants can detect current 
or emerging insights to support trading and operational 
decisions. 

III. FOUNDATIONAL CONCEPTS FOR BEHAVIOUR 
This section introduces several fundamental concepts that 

will be formalised in the context of an event pattern meta-
model in next section. They take into account relevant 
concepts from the RM-ODP standard [10], which provides 
precise definitions of foundational behavioural concepts such 
as actions, interactions, events and services in distributed 
systems, augmented with the definition of event patterns 
described in [1] and [2].  

Note that the RM-ODP standard includes the description 
of various behavioural constraints, including deontic policy 
constraints [11][12], which are important for monitoring 
conditions associated with business policies [16]. These are 
not addressed in this paper but are described in detail 
elsewhere [11][13][19]. The fundamental concepts for 
behavior are required to ensure establishing a common 
understanding about modelling and downstream 
implementation of distributed systems and applications. This 
agreement on standard concepts is a necessary condition to 
ensuring interoperability among people and systems, in an 
open environment. 

A. Action 
RM-ODP defines action as ‘something that happens’. 

Every action of interest for modelling purposes is associated 
with at least one object. The set of actions associated with an 
object is partitioned into internal actions and interactions. An 
internal action always takes place without the participation of 
the environment of the object. An interaction takes place 
with the participation of the environment of the object. Note 
here that “Action” means “action occurrence” not “action 
type”. That is to say, different actions within a specification 
may be of the same type but still distinguishable in a series 
of observations. Depending on context, a specification may 

express that an action has occurred, is occurring or may 
occur [10]. 

B. Event 
Event is described as  ‘the fact that an action has taken 

place’. When an action occurs, the information about the 
action that has taken place is captured in an event, and that 
event becomes part of the state of the system. An event may 
subsequently be communicated in interactions and this 
communication is called an event notification: it carries the 
information about the action from the object that performs or 
observes it to other objects that have a need to take action as 
a result of it [10]. 

C. Event Pattern Types and Ocurrences 
Our interest is in using event processing systems to 

facilitate analytics activities, such as identifying data quality 
issues, performing exploratory analytics and ultimately 
developing an infrastructure to support predictive analytics 
in real time. The use of a special kind of event processing 
systems, i.e. Complex Event Processing (CEP) systems, 
allows the application of sophisticated techniques to define 
and detect interesting combination of events that have 
specific business meaning. A definition of such combination 
of events is referred to as an event pattern type and a CEP 
engine is thus utilised to detect occurrences of specific 
combinations of events that satisfy event pattern types. Such 
a combination is referred to as an event pattern occurrence.  
It is typically the combination itself, rather than individual 
events that carry business semantics.  

An event pattern type is defined as a ‘template specifying 
one or more combinations of events’. Given any collection 
of events, a CEP detection engine can find one or more 
subsets of those events that match a particular pattern type 
and thus satisfy this pattern type [2]. 

IV. EVENT-PATTERN META-MODEL 
This section provides further elaboration of the concepts 

introduced in the previous section, using a UML meta-
model, depicted in Figure 3. The structure and informal 
semantics of events and event patterns is thus expressed as a 
combination of abstract syntax of the meta-model and 
narrative definition of the semantic concepts. Note that the 
concepts proposed as part of the RM-ODP framework have a 
formal semantics [12], but this is not discussed in this paper. 
There have been some other attempts for providing 
mathematic and logic based formalism for event pattern 
types and their detection, most notably [15]. Such formalism 
of detection semantics can constrain expressiveness, 
particularly in relation to parallel behaviour and time, 
without necessarily assisting in interoperability. Through 
providing narrative “hooks” our model allows formalism to 
be added as required to support implementation. 

This meta-model represents a conceptual model focusing 
on that part of complex event processing that is concerned 
with describing events and event patterns (including event 
pattern types and event pattern occurrences). The meta-
model does not capture other elements more related to the 
processing of events such as filtering, event aggregation, 



channels for notifications etc. These are necessary elements 
for deploying any CEP implementation, but the focus of this 
paper is on the use of CEP event pattern matching as a data 
analysis or machine analytics technique. 

A. Event 
As introduced in section III.B, the concept of event 

signifies the fact that some action has happened in the real 
world. In an information system, an event is thus a record of 
some action that occurred in the real-world and it captures 
information about this occurrence. An event conforms to an 
event type as defined in the following section. 

B. Event type 
An event type characterizes a set of events that share 

particular properties. Typically, this includes information 
such as: 
– when the action occurred, e.g. at particular point in 

time (instantaneous) or during particular interval (in 
which an action has start and end time associated with 
its occurrence) 

– what action the event signifies, e.g. trade buy or sale,  
– the source, that is where the action happened or was 

observed, e.g. on particular network, device, or 
particular software component 

– event id, typically assigned by an information system 
when it creates or receives the events 

– other application- or domain-specific data. 
We model event type as an abstract type with two 

concrete classes: simple event type and complex event type. 
These are used to distinguish two key properties of event 
types and their corresponding instances. The following 
sections describe these two event types in terms of their 
components and corresponding instances.  

C. Simple Event 
A simple event is an event that signifies an occurrence of 

a single action. While in many cases a simple event is 
instantaneous, e.g. News event, it can also have duration, e.g. 
Intraday trade event. 

A simple event typically has data modelled as an 
AtomicData element. 

D. AtomicData 
This modelling element is a generic attribute that 

captures business related data associated with an event, e.g. 
information about price of stock trade, volumes of trade etc. 
It is referred to as ‘atomic’ to signify the fact that event 
captures information about single action occurrence. 

E. AtomicDataType 
This modelling element specifies the type of 

AtomicData, defined by the format of data (e.g. CSV) and 
schema for the data (e.g. column definitions). 

F. Functor 
The concept of Functor is inspired by the Haskell 

functional programming language and is introduced to 
provide access to relevant information captured in an event 
regardless of its wire format or schema. For example there 

may be events capturing stock related announcements from 
different data streams, e.g. twitter, ASX, Google news etc, 
but we want to extract the relevant stock code in a consistent 
way for all streams. Thus we define a functor for each data 
source that satisfies a StockCode functor type.  

G. Functor Type 
Functor Type describes functions over events that return 

a value of a particular data type and semantics extracted or 
derived from an event instance (Event). Typically the value 
is extracted from the AtomicData element of an event, 
implying that functor instances are aware of the format and 
schema of the AtomicData element.  Specific Functor 
instances can then be defined to access different data sources 
with different formats or schemas such as price or news item 
identifiers from providers such as Thomson Reuters. In many 
respects a Functor Type is a generalisation of the more usual 
notion of “attribute” that allows us to abstract over the way a 
CEP implementation accesses data in events, and also focus 
our modelling and programming effort on the data necessary 
for rule definition. Unused data can be ignored. This is 
particularly important for data arriving from different 
sources with different schemas and wire formats, as it allows 
us to establish relationships across different data streams in 
an abstract but unambiguous and implementable manner. 

H. Complex Event 
A complex event signifies occurrences of a combination 

of related events that have some business semantics. A 
complex event is used to capture event pattern occurences 
that satisfy event pattern types.. An event pattern type 
defines relationships between contained events. Note that A 
complex event can satisfy multiple event pattern types or 
none, so while event pattern occurrence implies complex 
event, the reverse is not true. A complex event can also 
include another complex event as part of that event 
combination. 

I. Event Pattern Ocurrence 
This concept signifies occurrence of a set of events which 

are related through some expression. The form of this 
expression is defined by an EventPattern Type. 

J. Event Pattern Type 
Event Pattern Type concept defines a specific 

relationship between events of some business significance. 
An Event Pattern Type is used to specify relationship, data 
and time constraints across constituent events.  

There may be different type of pattern expression 
languages, combining mathematical, logical, statistical and 
various temporal constructs to define an event pattern. There 
are also a number of different event patterns types that were 
for example identified in [2].  

K. Event Pattern Implementation 
An Event Pattern Implementation refers to a specific 

implementation of an EventPatternType. One such 
implementation described in this paper makes use of the 



concept of a pattern directed acyclic graph or P-DAG, as 
shown in Figure 4 and described next. 

L. Pattern DAG (P-DAG) 
When designing the implementation of event pattern 

types, we consider the constituent events in an event pattern 
type, and the dependency between constituent events, 
including the temporal order of events, as the key factors. 
Thus, we adopt a directed acyclic graph called P-DAG 
(Pattern DAG) as a specific implementation of an event 
pattern type. P-DAG is thus used as an expression for 
specifying occurrences of a certain event pattern type. The 
advantage of P-DAG is that it can capture constituent events 
in an event pattern type as well as the dependencies between 
them. This leads to an easy representation of the event 
pattern type in a graphical way that is easy to understand for 
both developers and end users. 

 
Figure 3: Core CEP meta-model 

Formally, a P-DAG instance is defined as a DAG of 
Edge Types (E) connecting Node Types (N) as follows: 

• P-DAG = < N, E > 
• N = <n1, n2, … >  

− ni is a set of event(s), ni = <e1, e2, … > 
− ei is an event (i = 1, 2, …) 

• E = <edge1, edge2, … > 
− edgei is an edge between an ordered pair of 

nodes 
− edgei is defined by the ordering semantics 

(source, target and the ordering option) 
− source and target are two nodes in the P-DAG 

instance, which specify the order of two nodes 

− ordering options specifies additional rules of the 
ordering, e.g. the start time of the source node 
must be earlier than the start time of target node 

 

Figure 4: Event Pattern Type implementation: PDAG 
expressions 

To sum up, a node depicts a constituent event in an event 
pattern occurrence; an edge represents the ordering 
dependencies between nodes (constituent events). 

In a P-DAG, N is a non-empty set of nodes depicting all 
constituent events in an event pattern occurrence. The 
number of events represented by a node is called Node 
Cardinality. By default, a node denotes a single event; 
otherwise, a box with an annotation indicating the cardinality 
of the node will be attached to the box. The cardinality is an 
integer range, which can be from 0 to infinity. 

V. CASE STUDY 
This case study illustrates a number of specific event 

pattern rules used in finance research groups and a rule-
based front-end application [14] that invokes EventSwarm. 

A. Testing application 
Figure 5 shows the implementation of an analytics 

application (AA) developed to support researchers/domain 
experts interested in experimenting with different event 
pattern types. 

The application has a Front-End which is a known rule-
based application identified by the researcher organisation. 
This Front-End has applied a data model built upon the 
proposed meta-model. It plays the role of managing the 
process of data analysis. The EventSwarm software 
framework is used as an event pattern detection service. This 
software framework was introduced in [7] and its use is 
described in section VI.B. It is important to note that both the 
Front-End component and EventSwarm component 
implement concepts that are compliant with the meta-model 
introduced in the previous section. 
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Figure 5: Implementation Environment 

 
The following steps were applied in deploying and 

testing the finance event pattern types: 
1. A researcher specifies a set of interesting event pattern 

types. The specifications of the event pattern types are 
described in a natural language in writing or verbally to 
an IT expert. 

2. The IT expert implements the event pattern types in the 
event pattern detection service and makes them 
available for invocation by the Front-End application.  

3. The researcher invokes the event pattern detection 
service exposed via the Front-End. To invoke the event 
pattern detection service, the researcher needs to select a 
desired event pattern type (e.g. Duplicate dividend rule 
with a specific ID) from the list of event pattern types 
that have been implemented, and provide a data file to 
be analysed (e.g. SGB.csv data set). The Front-End then 
passes these parameters to EventSwarm using an HTTP 
GET request to a configurable URL. Alternatively, the 
researcher can conduct event pattern detection tasks via 
the EventSwarm pattern detection service GUI. 

4. The EventSwarm engine then returns detected event 
pattern occurrences in JSON format reflecting the model 
described in IV. Finally, the occurrences are further 
processed by the Front-End. 

It is worth noting that the results can be both displayed  
on the EventSwarm GUI or delivered to a known application 
identified by the researcher organisation. This programmatic 
delivery is done using an HTTP POST request to a 
configurable URL.  

Rules are implemented as Ruby classes in a Rails 
application at present, but we anticipate developing a domain 
specific language or user interface allowing researchers to 
define new rules in the future. This domain specific language 
will support a limited subset of the possible pattern types that 
can be expressed in the model from [7].  

B. Event patterns considered 
Table 1 describes the event pattern types related to 

financial market data that have been identified as candidates 
for analysis. There are 24 event pattern types that have been 

taken into consideration, of which 14 event pattern types 
have been selected for implementation due to the high 
interest for the research teams involved (see Table 1). The 
rest of the event pattern types considered are of less interest 
in this project; and we will implement them as part of our 
future work. 

C. Results 
Experiments were conducted by a researcher with some 

assistance of an IT expert. The researcher used the 
implemented analytics application (AA) to manage and 
conduct data analysis. First, the Front-End was used to 
define the processes of three different data analysis scenarios. 
They are: 
– Detecting occurrences of event pattern type No. 2 (1 

event pattern type involved) 
– Detecting occurrences of event pattern types No. 1-7 

(Handling data quality issues of dividend events; 7 
simple event pattern types involved) 

– Detecting occurrences of event pattern types No.8, 10-
14 (Calculating earnings; 6 more sophisticated event 
pattern types involved) 

 
The same analysis processes were implemented as a local 

bespoke program for comparison purposes. The researcher 
then executed these three analysis processes in AA and in the 
bespoke program respectively and inspected the results. For 
all the three scenarios, the analysis processes were conducted 
successfully with identical results. This indicates that the AA 
performed well and yielded the same results. Most 
importantly, the interoperability between the Front-End and 
EventSwarm was ensured due to the fact that the underlying 
data models in both the Front-End and EventSwarm are built 
on the same meta-model. 

 
Table 1: Implemented event pattern types 

 Name Event Pattern Description 

1 Dividend 
event An event is a "Dividend" event. 

2 Duplicate 
Dividends 

Two events with Type "Dividend" have the 
same timestamp, the same "Div Amt." and 

the same "Div Ex Date". 

3 

Missing 
EOD 

Event on 
Dividend 
Ex Date 

No "End Of Day" event exists with "Div Ex 
Date" of a "Dividend" event as the 

timestamp. 

4 

Div 
Missing 
Div Amt 

or Ex Date 

An event with the type "Dividend" has null 
or empty value in the field "Div Amt." or 

"Div Ex Date". 

5 

Dividends 
with 

Different 
Div IDs 

A pair of duplicate dividends (pattern type 
No. 4) have different "Div Mkt Lvl ID". 

6 Status is 
not 'APPD' 

A "Dividend" event has a value other than 
'APPD' in the field "Payment Status". 

7 
Delete 

Marker is 
not '0' 

A "Dividend" event has '1' in the field "Div 
Delete Marker". 



8 
Earning 

before End 
Of Day 

E -> EOD 
An event with type “Earning” (E) 

happens before an event with type “End Of 
Day” (EOD). 

(Find only one closest occurrence for 
each EOD if it exists.) 

9 

12-month 
Earning 

before End 
Of Day 

E12 -> EOD 
An event with type “Earning” (E12) happens 

before an event with type “End Of 
Day” (EOD) with: 

• The “EPS Period Length” of both E12 is 
12 

(Find only one closest occurrence for each 
EOD if it exists.) 

10 

Two 6-
month 

Earnings 
before End 

Of Day 

E6(2) -> E6(1) -> EOD 
Two events E6(1) and E6(2) with type 

"Earning" (E6(2) before E6(1)) happen before 
an event with type “End Of Day” (EOD) 

with: 
• The “EPS Period Length” of 

both E6(1) and E6(2) is 6; 
• E6(2).epsEndDate + E6(2).epsLength = 

E6(1).epsEndDate 
• Find only one closest occurrence for each 

EOD if it exists. 

11 

Two 3-
month 

earnings 
and one 6-

month 
earning 

before End 
Of Day 

E3(2) -> E3(1) -> E6 -> EOD 
Three events with type “Earning” 

(E3(2) before E3(1) before E6) happen before an 
event with type “End Of Day” (EOD) with: 
• The “EPS Period Length” of E3(2) and 

E3(1) is 3; The “EPS Period Length” of E6 
is 6; 

• E3(2).epsEndDate + E3(2).epsLength = 
E3(1).epsEndDate 

• E3(1).epsEndDate + E3(1).epsLength = 
E6.epsEndDate 

• Find only one closest occurrence for each 
EOD if it exists. 

12 

One 3-
month 
earning 

and one 9-
month 
earning 

before End 
Of Day 

E3 -> E9 -> EOD 
Two events E3 and E9 with 

type “Earning” (E3 before E9) happen before 
an event with type “End Of Day” (EOD) 

with: 
• The “EPS Period Length” of E3 is 3 and 

The “EPS Period Length” of E9 is 9; 
• E3.epsEndDate + E3.epsLength = 

E9.epsEndDate 
• Find only one closest occurrence for each 

EOD if it exists. 

13 

Four 3-
month 

earnings 
before End 

Of Day 

E3(4) -> E3(3) -> E3(2) -> E3(1) -> EOD 
Four events E3(1), E3(2), E3(3), and E3(4) 

with type “Earning” (E3(4) before E3(3) before 
E3(2) before E3(1)) happen before an event 

with type “End Of Day” (EOD) with: 
• The “EPS Period Length” of E3(1), E3(2), 

E3(3), and E3(4) is 3; 
• E3(i).epsEndDate + E3(i).epsLength = E3(i-

1).epsEndDate (i=2,3,4) 
• Find only one closest occurrence for each 

EOD if it exists. 

14 

One 9-
month 
earning 

and one 3-
month 
earning 

before End 
Of Day 

E9 -> E3 -> EOD 
Two events E3 and E9 with type “Earning” 
(E9 before E3) happen before an event with 

type “End Of Day” (EOD) with: 
• The “EPS Period Length” of E3 is 3 and 

The “EPS Period Length” of E9 is 9; 
+ E9.epsLength = E3.epsEndDate 

• Find only one closest occurrence for each 
EOD if it exists. 

The researcher and the Front-End developer have 
reported a number of advantages from driving the detection 
of event pattern occurrences using the concepts from the 
meta-model. In particular, the meta-model facilitates 
portability, allowing the Front End to consume the output of 
EventSwarm and thus leverage its ability to detect certain 
types of patterns without being locked with a particular EPS. 
Indeed, the invoking platform can call other EPSs to detect 
other types of patterns without the need to adapt to the output 
type specified by that EPS. Further, the EventSwarm 
platform provides additional implementation benefits, 
including: 
– simple and easy-to-use API: developers can easily 

integrate EventSwarm into their own applications. 
– very fast and efficient complex event processing. The 

average speed of processing is more than 10,000 events 
per second (remote invocation time inclusive) on 
Thomson Reuters Tick History daily data provided by 
Sirca. This is almost as fast as a bespoke program 
dedicated to a fixed event processing process and 
executed locally. 

– implementing event pattern types is generally very fast. 
It normally takes less than a day to implement 5 event 
pattern types. 

– JSON as the output format is well structured and it is 
convenient for developers to parse and further analyse 
the results.   

Some limitations include: 
– Users are not able to define event pattern types via the 

GUI or an API, and thus the development cycle largely 
depends on the availability of the IT expert. 

– The communication between the researcher and the IT 
expert can be very intensive so that the definition of 
event pattern types described by the researcher can be 
understood accurately by the IT expert. Any failure in 
the communication may cause issues that will be hard 
to diagnose in the future. 

VI. IMPLEMENTATION 
A. Front-End Application 

The front-end application provides the capability to run 
event processing rules to process financial market data, and 
to manage these rules in an incremental way. The GUIs and 
all business logic of the application are implemented using 
Java. The rules are stored in a PostgreSQL database. The 
front-end application sends requests to EventSwarm using 
RESTful invocations and receives the responses encoded 
using the wire format described in section D below. 



B. EventSwarm 
The EventSwarm implements the meta-model concepts 

from section IV and is used as the pattern detection service. 
It provides both a user interface and a RESTful interface for 
matching patterns against data sets. Upon completion of 
processing, it displays the result on the user interface and 
passes the result back to the calling application using an 
HTTP POST request containing matches encoded using the 
wire format described in section D below. 

The EventSwarm service is implemented using Ruby on 
Rails on the JRuby platform. The specified patterns were 
coded in Ruby, and are called in response to requests from a 
user or external application. The Ruby “patterns” are 
primarily constructors that build a CEP graph using 
EventSwarm core constructs. These constructs are provided 
through the EventSwarm core Java library with convenient 
Ruby wrappers to facilitate rapid development. Pattern 
matching execution primarily occurs in Java for maximum 
performance, although some elements of the earnings 
patterns are implemented in Ruby. Encoding of results into 
the wire format and sending is also implemented in Ruby. 

Patterns are matched in an EventSwarm application by 
feeding events through one or more processing graphs that 
select matching events or sets of events. Processing graph 
nodes can include sliding windows, filters, splitters 
(powersets) and abstractions. Abstractions are values or data 
structures calculated or constructed from the stream of 
events, for example, the EventSwarm statistics abstractions 
maintains sum, mean, variance and standard deviation over 
numeric data extracted from events in a stream. Events can 
be added to and removed from the stream by a node, 
although downstream nodes can choose to ignore removals. 
For example, a sliding window works by instructing 
downstream nodes to remove events that have “fallen out” of 
the window.   

C. Rule implementation 
The rules are implemented using four common designs 

and one pattern-specific design as described below. 
1) Simple filters 

Some rules were implemented using a simple, single-
event filter that collected events matching one or more static 
field values. For example, the “dividend deleted” rule 
matched events with a type of “Dividend” and a value of “1” 
in the “Div Delete Marker” field.  

2) Duplicate detectors 
Other rules needed to detect duplicates in the data stream. 

Duplicate detection can have high memory and processor 
overheads because it is necessary to hold a potentially 
unbounded set of “candidates”, and each new event has to be 
compared with all of the preceding candidates. Thus we use 
a candidate filter to minimise the number of candidates, then 
use the EventSwarm DuplicateEventExpression to 
compare candidates with new events using one or more event 
comparators. An example of such a duplicate detector is the 
“Duplicate dividend” pattern, which filters the set of 
candidates so that only “Dividend” events are considered, 

and then compares candidate stock code, amount and div-ex 
date to identify duplicates.  

It is important to note that if we were analysing a 
continuous stream, we would also use a sliding time window 
or sliding N-sized-window to avoid infinite buffering of 
candidates. Use of such sliding windows can decrease the 
accuracy of pattern matching because some matches might 
be missed, but in most practical scenarios, there is no loss of 
accuracy because duplicates are close together in the data 
stream. For this implementation, we relied on the finite size 
of the data sets analysed rather than using a sliding window.  

3) Simple event sequence 
Two rules matched a simple sequence of events, with 

each event in the sequence satisfying certain static 
conditions. These rules were implemented using the 
EventSwarm SequenceExpression with simple attribute 
matchers for each event in the sequence. For example, the 
“Earnings event before EOD” used SequenceExpression 
to look for an “Earning” event followed by an EOD event. 
Note that normally, this will generate a match for any 
sequence that satisfies the sequence expression components, 
meaning an EOD event would be paired with all previous 
earnings events. To ensure that EOD events were only paired 
with the most recent earnings event, only one candidate 
earnings event was held (i.e., a sliding window of size 1).  

4) Conditional event sequence 
A number of sequence patterns were implemented where 

the events of each candidate sequence needed to satisfy an 
additional condition defining necessary relationships 
between the events in the sequence.  In EventSwarm, we 
implement this by first matching the sequence, then applying 
the inter-event condition as a filter on the candidate sequence 
matches. For example, the “Bi yearly earnings before EOD” 
required that the two earnings events that started the 
sequence were contiguous in time. This was matched by 
looking for a sequence of two 6-month earnings events 
followed by an EOD event, then filtering the resulting 
sequences to match only those sequences where the earnings 
events were contiguous in time.   

A duplicate event filter was used in front of these 
expressions to ensure that duplicate earnings events were 
removed and only a single match was generated for each 
earnings period. 

5) Event not present in history 
The “Dividend without a valid EOD for the div ex date” 

pattern required that we identify cases where a “Dividend” 
event div-ex date (the end date of the period for which the 
dividend was paid) did not have a valid EOD event for the 
div-ex date. The “Dividend” event normally occurs within a 
month of the div-ex date. To implement this pattern, we 
maintained an EventSwarm sliding time window to hold the 
last 31 days of valid EOD events (i.e. at least one month), 
then for each matching “Dividend” event, the time window 
was searched to determine if it contained an EOD event that 
matched the div-ex date.  

Some elements of this expression were implemented in 
Ruby because no combination of existing EventSwarm 
components could implement the relatively obscure 
semantics. Note that this pattern implies negation, which is 



not easily implemented in CEP systems generally. See the 
evaluation in section E further discussion of negation. 

D. Wire format 
The wire format used to express patterns is a direct 

reflection of the P-DAG model described in Section IV. It 
uses JSON [17] for simple and efficient cross-platform 
processing. A sample of a JSON file that saves event pattern 
occurrences is shown in Figure 6. Each JSON file contains a 
number of event pattern occurrences that match a particular 
event pattern type. Each occurrence contains a description of 
the event pattern type and a P-DAG instance, which consists 
of a number of nodes and edges. Each node consists of the 
event type, id, source, start time, end time and a list of other 
atomic data. Each edge consists of ordering, source and 
target. 

 
Figure 6: Sample JSON file of Pattern Occurrences 

E. Evaluation 
The implementation of the patterns using EventSwarm 

was mostly straightforward and required only minimal 
programmer effort. It did, however, continually highlight 
complex semantic issues in pattern specification and 
implementation. Key examples are identified in the 
following subsections. 

1) Timestamp precision and ordering 
Some of the data sets processed had timestamps with a 

precision of 1 day (i.e. no time component). Thus strict 
“before” relationships in patterns would not fire unless dates 
were different. For example, if one searched for a dividend 
announcement followed by an end-of-day event, the pattern 
would only match end-of-day events on subsequent days. 
This is a general problem of precision in timestamps: 
sequence patterns can only match for events separated by a 
period greater than or equal to the timestamp precision. So if 
timestamp precision is 1 second, events separated by less 
than 1 second cannot be distinguished in time and thus 
cannot be sequenced.  

2) Bounding candidate matches 
A pattern that requires two or more events to match (e.g. 

A AND B) requires the solution to hold candidate A matches 
for subsequent pairing with B events. For a continuous data 
stream, an explicit or implied bound is required to make the 
pattern scalable, because each A event needs to be held as a 
candidate match until it can be determined that no further B 

events are possible. Thus to make the required storage finite, 
we need a bound on the number of A events held as 
candidates (e.g. in the last hour) or through an indicator that 
implies no further B events are possible (e.g. end-of-data-
set). 

3) Negation 
Negation can be particularly difficult to implement in 

CEP systems. Consider the example NOT(A). Over a 
continuous data stream, at what point can we assert that A 
has not occurred? Similar to the problem of candidate 
matches for sequence or conjunction queries, we need an 
explicit or implied bound for the evaluation semantics. For 
example, we could evaluate the pattern at regular intervals 
(i.e. every hour) or evaluate it over a limited time window 
(e.g. in the last hour). A further complication with negation 
is in deciding what to report as the match. What is the pattern 
matched by NOT(A)? Is it the set of events that has 
occurred? Or is it an empty result? This question becomes 
even harder to answer when conjunctions are used with 
negation. Thus a general pattern specification language that 
permits negation must provide mechanisms and semantics to 
address these issues.  

4) Edge semantics 
The P-DAG model for event pattern occurrences includes 

edges between events. These are defined in terms of the 
events and in this implementation, the edges reflect a strict 
“before” relationship between events. This is simple to 
implement and very general because it bears no relationship 
to the pattern specification. At present, the wire format also 
does not identify node types. Thus it can be difficult for a 
researcher to determine which event matched which element 
of a pattern without re-evaluating the pattern constraints 
locally (i.e. outside of EventSwarm). 

It is anticipated that researchers defining pattern types 
will need to associate events with “placeholders” in the 
pattern type. For example, if a pattern A -> B AND A’ -> C 
(A == A’) is evaluated against a data stream, the researcher 
needs to know which event matched A, A’, B and C 
respectively. To do this requires the association of explicit 
edge semantics with the pattern specification and/or explicit 
labelling of nodes, assuming re-use of node types (e.g. A, 
A’). This adds considerable complexity to pattern 
specification, the implementation and the wire format. The 
required semantics, likely complexity and implementation 
effort are currently being investigated. 

VII. CONCLUSIONS 
This paper has introduced a minimal set of modelling 

concepts related to the specification of event pattern types 
and event pattern occurrences. The meta-model was 
developed based on the foundational behavioural concepts 
from the RM-ODP standards, augmented with a number of 
concepts needed to support event pattern matching semantics 
for real-time analytics applications. We have shown that 
these concepts are sufficient to represent and implement a 
class of business analytics solutions for a number of use 
cases in finance related to market trading. In particular, the 
CEP EventSwarm framework, which is compliant with these 



concepts, allowed quick deployment of new rules, even of 
significant complexity, while delivering high performance 
execution of these rules in real-time. The software was 
deployed in a cloud environment and its services were 
invoked through the Front End application, which is also 
compliant with the meta-model. 

This case study has also revealed a number of semantics 
difficulties inherent to many CEP applications. In particular, 
the examples from section VI.E suggest that developing a 
general-purpose pattern language has limited value for 
researchers due to the inherent complexity of pattern 
specification and the difficulty of scaling without explicit 
bounds. We believe that researchers would be better served 
by limited, domain-specific pattern languages with a 
tractable matching semantics pre-determined (e.g. implied 
bounds, sequence and negation semantics that reflect natural 
data constraints, node labelling). The implication is that 
unless an event processing domain is strictly bounded, the 
complexity of an adequate pattern language is high enough 
that programmers will be required to implement patterns 
regardless of the language syntax and semantics.  

There might be some value for programmers in using a 
general-purpose pattern language rather than Ruby or similar 
OO/procedural languages, but the development of such a 
language is a large and complex body of work. Witness both 
the complexity and limitations of the many language choices 
in this domain discussed in [18]. The approach applied by 
EventSwarm, which is to make core constructs available in a 
general purpose programming language, provides agility, 
extensibility and accessibility. In particular, it allows existing 
application development frameworks like Rails to be used in 
the construction of CEP applications. The native availability 
of database, user interface, testing and deployment 
capabilities, coupled with the wide availability of third-party 
modules makes this a compelling approach to building 
robust, usable and production-quality applications.  

It should be noted that the semantic issues identified 
cannot be fully expressed in the recent formalism published 
in [15], justifying our decision not to capture formal 
detection semantics in the meta-model at this point in our 
work. Our experience from this implementation, however, 
will help in ensuring that future formalisation and domain 
languages have adequate expressiveness. 

In future we plan to implement a full set of rules listed in 
section V.B. We also plan to look at more complex event 
pattern occurrences related to cross-correlation between 
stock market events and the social media postings, in order 
to be able to develop new insights into relation between 
streams of events coming from different sources. We will 
continue to monitor developments in event pattern 
formalisms, and leverage these developments to create 
suitable and tractable domain specific languages for pattern 
definition.  
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