
Describing and Supporting Complex Interactions in
Distributed Systems

Andrew Berry
Department of Computer Science and Electrical Engineering

The University of Queensland
andyb@dstc.edu.au

26 July 2001

2

Abstract

The idea of building software that spans many computers has been a significant driver
for research since the earliest days of computing. Despite this past effort, there are still
considerable resources being applied to the problems of building distributed software
systems. This thesis proposes an alternative approach to building distributed systems
that is both pragmatic and has a sound theoretical basis. The approach is driven by the
following key assertions:

1. The construction of software systems has become an evolutionary rather than
revolutionary process. New software must extend or incorporate old software.

2. Distributed applications must often coordinate the activities of multiple partic-
ipants with varying relationships. Static abstractions like client-server are too
primitive and inflexible to describe such relationships.

3. Communication networks cannot consistently deliver high-bandwidth, low-latency,
low-failure communications. Distributed software must be able to deal with the
degradation or loss of communication.

Given this context, this thesis describes Finesse, a system for describing and sup-
porting the complex interactions of components in distributed applications. Finesse
uses the notion of event relationships to describe the visible behaviour of components
and how those behaviours are coordinated to satisfy the requirements of an application.
There are three significant aspects of Finesse, each of which makes a novel contribu-
tion to the body of research:

1. A semantic model that provides the theoretical basis for event relationships.

2. A programming language for describing component interfaces and the relation-
ships between events occurring on those interfaces.

3. A distributed runtime engine that manages and mediates communication be-
tween components to implement distributed programs described using the Fi-
nesse programming language.

The system implies a mediated communication architecture, where a mediating
component accepts events from components and distributes appropriate notifications
to other components. This decoupling of components and the mediation semantics al-
low the necessary transformation of data and event correlation to support legacy appli-
cations. The event relationship semantics, however, also allow the mediator to be fully
distributed and asynchronous. This asynchrony allows us to deal with high-latency,
high-failure communication networks. The design of the programming language al-
lows us to develop mediating ’components’ that can be nested within a higher level
mediator, thus giving us the ability to build a flexible library of abstractions for rela-
tionships between participating components.

The thesis includes a set of examples that demonstrate the approach and its strengths.
Through the examples and the arguments expressed in the work, this thesis demon-
strates the power and utility of the event relationship approach to building distributed
systems.

2

Statement of Sources

I, Andrew Berry, declare that the work presented in this thesis is, to the best of
my knowledge and belief, original, except as acknowledged in the text, and that the
material has not been submitted, either in whole or in part, for a degree at this or any
other university.

3

4

Acknowledgments

I want to thank a number of people and organizations who have supported, di-
rected, and assisted me in completing this thesis. My supervisor, Professor Simon
Kaplan, provided a research environment full of inspirational, supportive, people and
gave me the freedom to follow my gut feelings and explore with abandon. I owe him
many thanks for his support and belief in me. Colin Fidge was my original motivator,
arousing my interest in the unique problems of distributed systems some years before
I began this journey. I owe him many thanks for that and for the numerous subsequent
discussions that helped to direct my thesis and give me confidence in my findings. I
would also like to thank the staff and management of the DSTC for their support and
encouragement throughout my thesis. In particular, Kerry Raymond was crucial in di-
recting my thoughts along the paths that led to this thesis result. David Garlan hosted
me during a stimulating six-month visit to Carnegie Mellon University in 1998, adding
another dimension to my understanding of the related work. My current employers,
ADC Software Systems Australia, have been very sympathetic while I have struggled
to complete the thesis part-time during the last two years. I would especially like to
thank my manager David Pope for understanding my needs and allowing me to take
leave whenever necessary to progress my work.

The thesis was begun in 1995 at a particularly difficult time in my life. I had not
long before lost my young son to a congenital illness and was struggling to find my
emotional feet. In retrospect, I think that beginning a thesis was the right decision for
me, but at the time I had many doubts and the first year was particularly difficult. Now
that I am at the end of the thesis, I can look back and say without reservation that it
has been an experience I will treasure, as much for the relationships I have developed
as for the academic and professional achievements. Given this context, I most want to
thank the friends and family who have helped me through the process of finding life
and learning to love again. Without them, I don’t think the thesis would have been
completed.

5

6

Contents

1 Introduction 13
1.1 Pervasive Software . 13
1.2 The Discipline of Distributed Systems 14
1.3 A Plethora of Communication Technologies 15
1.4 Introducing Finesse . 16

2 System Overview 19
2.1 Influences . 20

2.1.1 The A1 Model and RM-ODP 20
2.1.2 Architecture and Coordination Languages 20

2.2 Architectural Model . 21
2.3 Behavioural Model . 22
2.4 Language . 22

2.4.1 Parameterizable RPC . 23
2.4.2 Example: File Access using RPC 24
2.4.3 Multicast RPC . 25
2.4.4 Replicated File Access . 26

2.5 Runtime Infrastructure . 27
2.6 Concluding Remarks . 28

3 Literature Review 29
3.1 Software Architecture . 29
3.2 Distributed Systems Architecture . 31

3.2.1 Reference Model of Open Distributed Processing 32
3.2.2 The A1 Architecture Model 32

3.3 Coordination . 33
3.4 Component Systems . 35
3.5 Interaction Paradigms for Distributed Systems 36

3.5.1 Remote Procedure Call . 36
3.5.2 Message Passing . 37
3.5.3 Multicast . 38
3.5.4 Streams . 38
3.5.5 Replication . 39
3.5.6 Distributed Shared Memory 39
3.5.7 Distributed File Systems . 39
3.5.8 Transactions . 40

7

3.5.9 Event-based Interaction . 41
3.5.10 Connection-based Interaction 41
3.5.11 Intelligent Agents . 42
3.5.12 Mobile Agents . 42

3.6 Distributed Systems Infrastructure 43
3.6.1 Commercial Environments 44
3.6.2 Research Prototypes . 45

3.7 Computer Supported Cooperative Work 46
3.7.1 CSCW Systems and Sociological Theory 47
3.7.2 CSCW Toolkits . 48
3.7.3 CSCW Criticism of Existing Distributed Systems 48
3.7.4 Languages for Describing Collaboration 49

3.8 A Scaffolding supporting Finesse . 50

4 Semantics of Behavioural Model 51
4.1 Base Execution Model . 52
4.2 Templates describe Programs . 54
4.3 Program Execution . 56
4.4 Parameters . 57

4.4.1 Defining Parameter Relationships 57
4.4.2 Identifying Event Parameters 58

4.5 Guards and Timing Constraints . 59
4.6 Distributing the Execution . 60

4.6.1 Synchronization . 63
4.6.2 Autocratic Choice . 63
4.6.3 Safe Programs . 63
4.6.4 Optimistic Execution . 64

4.7 The Significance of Location . 65
4.8 Formal Specification . 66
4.9 Introducing Z . 67
4.10 Basic Behaviour Description . 68

4.10.1 Base Types . 69
4.10.2 Events and Event Templates 70
4.10.3 Causality Graphs . 71
4.10.4 Guards and Time Semantics 72
4.10.5 Correct Execution . 73
4.10.6 Transition Semantics . 75

4.11 Formalising Distribution . 77
4.11.1 Templates and Locations . 78
4.11.2 Initialization . 79
4.11.3 Distributed State . 79
4.11.4 Distributed Transitions . 80
4.11.5 History Updates . 82
4.11.6 Properties of Transitions . 82

4.12 Concluding Remarks . 83
4.13 Acknowledgments . 84

8

5 Language 85
5.1 Introduction . 85
5.2 Basic Syntax and Structure . 86

5.2.1 Structure of a Finesse Program 86
5.2.2 Describing Roles . 87
5.2.3 Describing Interactions . 87
5.2.4 Event Templates . 88
5.2.5 Named Behaviours . 89

5.3 Describing Behaviour . 90
5.3.1 Introducing the Causality Operator 90
5.3.2 Complex Expressions . 90
5.3.3 Logical AND . 91
5.3.4 Logical OR . 92
5.3.5 Exclusive OR . 93
5.3.6 Combining Logical Operators and Complex Expressions . . . 93
5.3.7 The Logic of Cardinality Constraints 94

5.4 Control Flow . 96
5.4.1 Roles, Interactions and Iteration 96
5.4.2 Iteration . 97

5.5 Resolving Event References . 98
5.6 Guards . 99

5.6.1 Time Guards . 100
5.6.2 Event Causality Guards . 100

5.7 Parameter Relationships . 101
5.8 Reuse and Generics . 102
5.9 Concluding Remarks . 103

6 Runtime Engine 105
6.1 Overview . 105
6.2 Representing Programs . 107
6.3 Initialising a Program Execution . 107
6.4 Executing a Program . 109

6.4.1 Causal Enablement . 110
6.4.2 Guards and Timing Relationships 110
6.4.3 Enabling an Event . 111
6.4.4 Managing the Event History 112
6.4.5 Parameter Relationships . 114

6.5 Language Binding . 115
6.6 Other Design Issues . 116

6.6.1 Garbage Collection . 116
6.6.2 Error Detection and Handling 116
6.6.3 Reliable Communication . 117

6.7 Concluding Remarks . 118

9

7 End-to-End Example 119
7.1 Example Program . 119
7.2 Compilation . 120

7.2.1 Roles Compilation . 120
7.2.2 Interactions Compilation . 121

7.3 Participant Behaviour . 122
7.4 Instantiation . 123
7.5 Execution . 123

7.5.1 Initial Client State . 124
7.5.2 Initial Server State . 124
7.5.3 Client Executes Send . 124
7.5.4 Server Receives Client Send Notification 125
7.5.5 Server Executes Receive . 126
7.5.6 Server Executes Send . 126
7.5.7 Client Receives Server Send Notification 127
7.5.8 Client Executes Receive . 128

7.6 Concluding Remarks . 129

8 Examples 131
8.1 Programmable, Component-Oriented Middleware 132

8.1.1 Reliable Multicast . 132
8.1.2 Two-phase Commit . 133
8.1.3 Streaming Data . 135

8.2 Enterprise Application Integration 140
8.3 Business to Business Interaction . 142
8.4 Computer Supported Cooperative Work 144
8.5 Concluding Remarks . 147

9 Discussion and Related Work 149
9.1 Does it Satisfy? . 149
9.2 A Critical Examination . 151

9.2.1 Complexity . 151
9.2.2 Finesse Language Syntax . 152
9.2.3 Quality of Service . 153
9.2.4 Dynamic Behaviour Instantiation 154
9.2.5 Security . 154

9.3 Related Work . 156
9.3.1 Models for Parallel and Distributed Systems 156
9.3.2 Mobile Agent Technology 157
9.3.3 Coordination and Architecture Description Languages 159
9.3.4 Middleware Platforms . 160
9.3.5 EAI Platforms . 161
9.3.6 B2B Platforms . 162

9.4 Concluding Remarks . 162

10 Conclusion 163

10

A Finesse Language Syntax 179

12

Chapter 1

Introduction

This thesis describes a new approach to the construction of distributed systems. The

approach suggests building distributed systems by declaratively specifying the rela-

tionships between the visible behaviours of participating components, and executing

this specification on a distributed, asynchronous, execution engine. The approach and

the system that implements it is called Finesse. Finesse is intended to deal with the

realities of software construction and use: while innovative and theoretically sound, it

addresses pragmatic concerns of the software engineering discipline.

In this introductory text, a set of assertions about the nature of software construc-

tion and distributed systems is introduced. After describing Finesse in subsequent

chapters of the thesis, the approach will be evaluated against these assertions.

1.1 Pervasive Software

Software running on computers has become a pervasive part of life in our society: The

delivery of fuel and ignition timing in a car engine is controlled by software; Banks and

commodity markets are entirely dependent on computerized transaction systems; And

many electrical appliances in our homes are now controlled by software. Almost every

office desk has a computer, and the proportion of homes with a personal computer and

an Internet connection is growing rapidly.

Witness also the worldwide flurry of activity associated with the millennium bug.

The significance of the millennium bug highlights our dependence on software, is a

13

reflection of the long-term value of existing software, and is an indication that software

systems must be built to deal with changing environments.

These two facts—the pervasiveness of software and intrinsic value of existing

software—lead us to a first assertion about software construction:

The construction of software has become an evolutionary rather than rev-

olutionary process. New software must extend or incorporate old soft-

ware.

1.2 The Discipline of Distributed Systems

The notion that software can be built as a set of independent but cooperating compo-

nents running on distinct processors has been a driver for research for more than two

decades. Consider the early work of Lamport[77] on distributed clocks, the Cambridge

distributed system[132], or Gifford’s work on replication[49]. This field of research is

traditionally known as distributed systems. Considerable resources have been applied

to the many problems associated with distributed systems, and there have been many

successes.

The adoption of distributed systems in commercial settings has been steadily in-

creasing. This is driven by the steady migration of many business functions to desktop

computers, and the increasing need to support those business functions with timely

and relevant information in widely dispersed organizations. There has also been a

push towards integrating once-distinct systems within an organization to provide a

single, coherent view of the organization on the desktop, and to use computer systems

as the basis for cooperative work between physically distributed users. These applica-

tions are distributed by necessity, rather than to satisfy performance and other technical

objectives.

A key feature of infrastructures that successfully support existing distributed sys-

tems is appropriate abstractions for connecting system components. Remote procedure

call[15], distributed transactions[136], and 3-tier architectures[37] are all abstractions

that have been used successfully. These abstractions tend to be static, programmatic,

relatively low-level, and oriented towards two-party interaction. The emergence of

14

multimedia, computer supported cooperative work (CSCW), and the integration of

multiple sources of information suggest the need for more flexible and higher-level

abstractions. The second assertion of this thesis is thus:

Distributed applications must coordinate the activities of multiple partici-

pants with varying relationships. Static abstractions like client-server are

too primitive and inflexible to describe such relationships.

1.3 A Plethora of Communication Technologies

While distributed systems have been evolving through the 90s, communication and

telephony systems have been exploding. Mobile phones have become a ubiquitous tool

of the increasingly-mobile business worker, and the Internet has become the preferred

way of sending and receiving information for both personal and business purposes. A

key aspect of technologies in these areas is that they are international: communica-

tion and cooperation across national boundaries is now both common and relatively

inexpensive.

This explosion of communication technologies has emphasized, however, the short-

comings of ubiquitous networking and communications. While the Internet as a whole

is highly reliable, the failure of a single node can result in the loss of communication

between two entities and such failures occur relatively often. The significance of inter-

national communication is that the latency of communication is theoretically limited

by the speed of light in a vacuum (c x m s): this latency becomes a significant

performance limitation on synchronous interactions. For example, a round-trip com-

munication between nodes 10,000km apart has a latency of c or

ms if communication occurs at the maximum theoretical speed. This time is many

orders of magnitude higher than the time taken to execute a processor instruction or

local memory fetch.

A further complication is that the coverage offered by mobile communication net-

works is limited to areas of high-density population because of costs, and that both the

bandwidth and reliability of such networks is limited. This leads to a third assertion of

this thesis:

15

Communication networks cannot consistently deliver high-bandwidth, low-

latency, low-failure communications. Distributed software must be able to

deal with high latency and the degradation or loss of communication.

1.4 Introducing Finesse

With the assertions of the preceding sections in mind, this thesis proposes the Finesse

approach to the construction of distributed systems. The thesis describes the approach

and a system built to support the approach, and shows its utility through examples.

There are three components of Finesse, each of which contributes to the body of re-

search in distributed systems:

1. A semantic model that provides the theoretical basis for describing relationships

between components and executing programs to realize those relationships.

2. A programming language for describing the visible behaviour of components

and the relationship between the behaviours that results in the desired distributed

application.

3. A distributed runtime engine that manages and mediates communication be-

tween components to implement distributed programs described in the terms of

the semantic model.

This approach can integrate existing software, provide a basis for building flexible

and high-level abstractions, and places minimal constraints on the infrastructure used

to realize an application.

The following chapter provides an overview of the Finesse system to give readers

a high-level understanding of the components and goals of Finesse. Chapter 3 surveys

relevant literature to define the scaffolding upon which the ideas of this thesis rest.

Chapters 4, 5, and 6 describe the execution model, programming language, and im-

plementation of Finesse respectively. Chapter 7 provides an end-to-end programming

example to illustrate the concepts in the preceding chapters and their relationships.

Chapter 8 demonstrates the capabilities and wide applicability of the approach through

16

examples and associated discussion. Chapter 9 evaluates the Finesse system by return-

ing to the key assertions of this chapter to show that Finesse addresses these assertions,

discussing the strengths and weaknesses of the approach, and showing the novelty of

Finesse through comparison with related work. In conclusion, the thesis emphasizes

the contribution of this work to the practice of distributed software construction.

17

18

Chapter 2

System Overview

This chapter gives an informal overview of Finesse with the intention of preparing

readers for the more detailed discussions in subsequent chapters. It describes the pri-

mary influences, architecture model, and key components of the approach, including

some simple examples to illustrate the concepts.

Finesse is a platform and an approach for describing and supporting complex in-

teractions between components in distributed systems. The system comprises an exe-

cutable semantic model, programming language, and a runtime infrastructure for exe-

cuting programs. Finesse began as an attempt to realize the architectural concepts of

the A1 model[11] in a development environment for distributed systems. The ini-

tial focus was on a prototype language, with the goal of investigating programming

models that allowed description of arbitrary interaction mechanisms within the archi-

tectural framework of A1 . A secondary goal was to use a behavioural model that

allowed components to execute autonomously without the need for a central mediator,

since both A1 and RM-ODP are intended to support interactions that cross enterprise

boundaries. In these situations a central mediator is undesirable.

Through a process of revision and refinement, the prototype language has become

the Finesse language syntax described in this thesis. The underlying behavioural model

was formalized after it was shown that the language could describe complex interac-

tions in a flexible and modular fashion. A prototype implementation capturing the

semantic model and the architectural principles embodied in the language was built

concurrently with the formalism to show the feasibility of the language and model.

19

The goal of autonomy for the distributed components has been realized through careful

design of the behavioural model: it allows behaviour to be arbitrarily distributed across

a set of autonomous runtime engines communicating only through asynchronous mes-

saging.

2.1 Influences

2.1.1 The A1 Model and RM-ODP

Finesse was developed to support the principles and concepts of the A1 architec-

ture model for distributed systems. It directly uses the notions of binding, interface

and role defined by the model (described in section 2.2), and early work on the be-

havioural model[102] was performed in conjunction with researchers from the CRC

for Distributed Systems Technology where the model was developed.

The A1 model has a strong relationship with the ISO Basic Reference Model

of Open Distributed Processing[63, 105]. The notions of binding and interface are

strongly related to similar ODP concepts, although the A1 model does not use the

ODP viewpoints. Finesse benefits from the open systems approach in not prescribing

specific data models or infrastructure, although the prototype implementation uses a

particular language and network infrastructure.

2.1.2 Architecture and Coordination Languages

Finesse is also strongly influenced by work in architecture description languages. Re-

search into software architecture [117, 118] supports a model of programming that dis-

tinguishes software components and their connectors. This model promotes reuse and

reduces the coupling of software components, and a number of architecture descrip-

tion languages have been developed, for example Wright[45] and Rapide[80]. The

primary difference between Finesse and these languages is that architecture descrip-

tion languages are typically oriented towards simulation and analysis of architectures

rather than building software systems.

Recent efforts in developing coordination languages and models[31] for distributed

systems have focused on the need to distinguish components and their coupling, and

20

incorporate strong abstraction capabilities in languages for programming distributed

systems. These same principles are used in Finesse, although there are a number of

differences between Finesse and these systems, discussed further in chapter 9. These

languages and models are usually executable and intended for building software sys-

tems.

2.2 Architectural Model

The primary concept in Finesse is the binding as defined in the A1 model, which

is an entity that encapsulates the communication between distributed components par-

ticipating in an application. A binding is equivalent to the notion of a connector, a

term commonly found in software architecture literature[1, 117, 106]. Bindings are

described in terms of the following fundamental concepts:

role: a binding has a set of roles that can or must be filled by participating compo-

nents. One or more components can fulfill a single role, providing a convenient

abstraction for group interaction.

interface: components have interfaces through which they interact with their environ-

ment. Each interface is assigned to one or more roles in the binding and must

implement the behaviour specified for those roles.

events: components participate in a binding (interact) by executing events at their

interfaces. Events are immutable and have a location (interface), parameters,

and an execution time.

event relationships: event relationships specify the behaviour and interactions of a

binding by describing the relationships between events occurring at component

interfaces.

A binding is instantiated by nominating a Finesse program or some compiled form

of that program, and a set of components to fulfill the roles of the binding. The under-

lying distributed infrastructure is required to establish an appropriate set of network

connections and supporting components to implement the Finesse program. A Finesse

21

program also could be used to generate stubs for the participating components in a

similar manner to CORBA IDL, meaning that Finesse is somewhat independent of the

language used to build the participating components.

2.3 Behavioural Model

Event relationships provide the basis for describing behaviour in bindings. Event re-

lationships capture the dependencies between events occurring at the interfaces of

components participating in a distributed application. Three distinct types of event

relationship are identified:

Causal relationships which describe the causal dependencies between events;

Parameter relationships which describe the relationships between parameters of causally

related events. Parameter relationships specify the content of messages passed

between interacting components in a declarative, application-oriented manner;

Timing relationships which describe the real-time relationship between events. These

relationships can be used to describe, for example, timeouts or quality of service

requirements of interactions.

The causal relationships between events form the basis of the execution model

associated with a Finesse implementation, and in a given program, these relationships

describe the control flow. Parameter and timing relationships declaratively specify the

data flow and time-dependent properties of a binding program.

These concepts, combined with the notions of binding, interface and role, provide

an extremely powerful technique for the description of distributed systems interaction.

For example, it is possible to succinctly describe and easily extend remote procedure

call, group communication, and stream behaviour. The declarative specification of

data flow also provides a basis for optimization of messaging.

2.4 Language

The Finesse language provides a syntax to express the structuring and behaviour of a

binding. The syntax is not intended to be the only way of writing such programs, but

22

provides an illustration of how the behavioural model can be realized in a specification

or programming language. It has some similarities with process algebras like CSP

and LOTOS, but includes more significant facilities for describing data and uses a true

concurrency model.

It is easiest to give a flavour for the Finesse language using some examples. The

following examples demonstrate the basic features and structuring of the Finesse lan-

guage. We use the language to define RPC interaction, then extend RPC to implement

multicast RPC with minimal changes.

2.4.1 Parameterizable RPC

The following binding describes a parameterizable RPC interaction with two roles,

client and server. The Roles section defines the behaviour of the participants. The

Interactions section defines the relationship between the roles. A set of required mes-

sages and hence appropriate network connections can be derived from the behaviour.

Binding RPC {
-- simple, parameterizable RPC

Roles {
-- the client role is parameterized by a set of input and
-- output values
Client(IN, OUT) {

-- the client executes a send (output) followed by a
-- receive (input)
send!(IN) -> receive?(OUT)

}
-- the server role is similarly parameterized
Server(IN, OUT) {

-- the server executes a receive followed by a send
receive?(IN) -> send!(OUT)

}
}

23

Interactions {
-- the client send causes the server to receive,
-- with parameters matched by name
Client.send -> Server.receive {*= prev} AND

-- the server send causes the client to receive,
-- with parameters matched by name
Server.send -> Client.receive {*= prev}

}
}

The following syntactic elements are used:

Client IN OUT introduces the client role, parameterized by a set of sent values

sent (IN) and a set of received values (OUT).

send IN indicates an event where the client outputs the IN values

receive OUT indicates an event where the client accepts the OUT values

indicates a causal relationships between events, that is A B specifies

that A affects B hence must occur before B.

Client send refers to the execution of the client send event.

prev indicates that the parameters of the current event should be set equal to

parameters having the same name in the previous event (i.e. name equivalence).

2.4.2 Example: File Access using RPC

Use of this parameterizable RPC binding is demonstrated in the following binding

definition for file I/O:

24

Binding FileIO {
-- read-only file access using RPC

Import RPC;

Roles {
-- Client and Server implement open/read/close
Client {

open { RPC.Client ((name:string), (fh:handle)) } ->
loop {
read { RPC.Client ((fh:handle, bytes:int),

(buf:buffer,bytes:int)) }
} ->
close { send!(fh:handle) }

}
Server {

open { RPC.Server ((name:string), (fh:handle)) } ->
loop {
read { RPC.Server ((fh:handle, bytes:int),

(buf:buffer, bytes:int)) }
} ->
close { receive?(fh:handle) }

}
}

Interactions {
-- Client operations result in corresponding server
-- operations. Operations are performed sequentially.
RPC(Client.open, Server.open) ->
RPC(Client.read, Server.read) ->
Client.close -> Server.close {*= prev}

}
}

Notice that iteration is only specified in the role definitions: this minimizes unneces-

sary specification and avoids the possibility of conflicting iteration constructs in the

role and interaction specifications.

2.4.3 Multicast RPC

The original RPC binding can be extended to support multicast RPC. The client and

server roles are unmodified, allowing the original client and server to be used:

25

Binding MultiRPC {
Import RPC;
Roles {
Client { RPC.Client }
-- the cardinality constraint specifies that there
-- must be at least one server.
[#>=1] Server { RPC.Server }

}

Interactions {
-- a client send causes all servers to receive
Client.send -> [#=all] Server.receive {*= prev} AND

-- however, only one of the responses causes a
-- result to be delivered to the client.
[#=1] Server.send -> Client.receive {*= prev}

}
}

This example introduces cardinality constraints associated with roles and their be-

haviour. All roles in a binding can potentially be filled by many participating com-

ponents. By default, a role is filled by only one participant. The addition of an appro-

priate cardinality constraint allows a role to be filled by multiple participants. This use

of cardinality constraints provides a convenient and powerful mechanism for describ-

ing group communication.

2.4.4 Replicated File Access

A replicated file access binding shows how the multicast RPC binding can be used:

Binding ReplFileIO {
-- replicated, read-only file access

Import MultiRPC, FileIO;

Roles {
-- Client and Servers implement open/read/close
-- operations, as before. Only Server cardinality
-- has changed.
Client { FileIO.Client }
[#>=1] Server { FileIO.Server }

}

26

Interactions {
-- RPCs by client are multicast to servers
MultiRPC(Client.open, Server.open) ->
MultiRPC(Client.read, Server.read) ->
Client.close -> [#=all] Server.close {*= prev}

}
}

This set of examples demonstrates how a basic interaction mechanism can be extended

to suit new requirements. Notice in particular, that clients and servers are unchanged

despite the change in interaction mechanism. This suggests significant potential for

reuse and legacy application integration.

2.5 Runtime Infrastructure

The Finesse runtime infrastructure implements a fully-distributed and asynchronous

state machine for executing Finesse programs. Each participating component has a

local runtime engine that determines when local events can be executed and how they

should be positioned in the state machine. Chapter 6 describes this behaviour in more

detail. The distribution and asynchrony are possible because the semantic model uses

causality as the basis for defining event dependencies: an event can be executed as

soon as the local runtime engine has been notified of all events upon which it depends.

There is no requirement for the engines to maintain a synchronized view of system

state. Each runtime engine thus maintains an incomplete view of the system state, and

need only be notified of remote events that are required to satisfy local dependencies.

For example, in the RPC binding described in the preceding section, the client need

only be informed of the occurrence of the server send event. While this might seem

obvious, it means that the server receive event does not appear (or need to appear) in

the client state machine. What is important, however, is that event notifications carry

sufficient information to determine where in the state machine they should appear.

This is achieved in the runtime engine by using a form of vector clock to capture

causal dependencies. Note that the restricted context created by a binding and the

finite nature of binding programs means that the vector clocks are bounded in size in

27

most programs. This aspect is discussed in more detail in chapter 6.

Programs are stored in an internal form as a set of event templates, with decision

trees representing the dependencies of each event. An event is executed when suffi-

cient causal predecessors have occurred to satisfy the decision tree and any parameter

or timing relationships. The current prototype also requires the participation of the

component in all local events, however, this requirement is primarily to simplify im-

plementation and can be removed. When an event is executed, a notification is sent

to all remote components potentially having direct causal dependents or parameter

relationships.

The key advantage of an asynchronous approach based on causal relationships

is that Finesse programs can describe and support applications using unreliable or

sporadically connected components. This is important in such large scale networks as

the Internet and for mobile computing systems.

The runtime engine also supports the time and parameter relationship semantics of

the language. While the examples above use name equivalence specification of param-

eter relationships, these relationships can also explicitly identify only the necessary

relationships. This allows the runtime infrastructure to send only the necessary param-

eters of an event with each notification, which can be a significant optimization when

parameters are unused by a remote component.

The prototype currently supports only the Java environment and TCP/IP as the

network infrastructure. The Finesse language and runtime design are not in any way

tied to this platform, however.

2.6 Concluding Remarks

This chapter has introduced the Finesse system in an informal manner. The system

comprises three key components: an executable semantic model based on the be-

havioural model informally described here, the Finesse language, and a runtime en-

gine. The simple examples presented here hint at the capabilities of the approach.

Subsequent chapters will describe these components in more detail and further demon-

strate the novelty and strengths of Finesse.

28

Chapter 3

Literature Review

This chapter surveys the literature and technology from research disciplines and com-

mercial products that influence the Finesse approach. The goal is to provide a histor-

ical and technological basis for the subsequent description of Finesse and to provide

motivation for the approach and features of Finesse.

The chapter first surveys research in software architecture (3.1 and 3.2), coordina-

tion languages (3.3), and component models (3.4), which provide much of the architec-

tural basis for the Finesse approach. The behavioural model and underling execution

semantics is strongly influenced by existing work in distributed systems, specifically

interaction models for distributed software components and the underlying middle-

ware technology. These technologies are surveyed in section 3.5. The implementation

of Finesse is influenced by distributed systems infrastructure technology and this tech-

nology is described in section 3.6. Finally, CSCW literature is reviewed in section 3.7,

since it is one of the key motivators for this work.

3.1 Software Architecture

A significant influence on Finesse has been work in software architecture. Software ar-

chitecture focuses on the need for concise, well-defined abstractions when constructing

software systems. The study of software architecture in recent years has highlighted

the need to describe the configuration and interactions of software components, dis-

tributed or otherwise, in a way that distinguishes this description from the components

29

themselves. This separation decouples the behaviour of interacting objects to promote

reuse. In distributed systems, this distinct specification of interactions can result in sig-

nificant optimizations of communication[62]. Garlan and Shaw[118] are pioneers in

the area, and their work has resulted in a number of architecture description languages

[116, 1] and other approaches to capturing software architecture[45]. Typically, archi-

tecture description languages allow the description of a set of software component

interfaces and the way these interfaces are connected. The semantics of connections

are captured in connectors.

The Unicon[116] language provides a fixed range of connectors including proce-

dure calls, pipes and filters. In Wright[1], connectors are specified in a language based

on CSP[59]. Wright uses modified CSP tools to analyse connectors and the interfaces

they connect ensuring that the interactions are, for example, deadlock free. This ap-

proach is oriented towards the capture of process-oriented behaviour and uses an inter-

leaved concurrency model. Rapide[80] uses an event based model and posets (partially

ordered sets) to capture the true concurrency of distributed systems. Rapide includes a

data model and has a toolset that supports simulation and analysis of software architec-

tures. Darwin[84] defines a configuration language that uses process-oriented semantic

descriptions of interfaces and connections to determine the correctness of a configura-

tion of objects. This work has a formal semantics based on the -calculus[94].

These architecture description languages share a common goal of allowing soft-

ware engineers to accurately document the software architecture. This allows rigorous

analysis at the architectural level, reducing the cost of software development by iden-

tifying potential problems early in the software lifecycle[118]. These tools are not, in

general, augmented by tools to assist in building a software system using the specified

architecture.

A number of object-oriented methodologies have also been developed to cater

for the needs of object-oriented software developers. Examples are Booch[19] and

Rumbaugh[112]. These methodologies have associated languages oriented towards

non-distributed software, although work on a methodology known as UML[104] is

now addressing distributed systems issues. As with the work in architecture descrip-

tion languages, these methodologies recognize the need to explicitly model the rela-

30

tionships between components (objects), although the focus here is on data rather than

process-oriented relationships. UML is making progress towards a formal underpin-

ning, but these object-oriented methodologies lack the formalism necessary to perform

rigorous analysis of the described architecture. In contrast to the architecture descrip-

tion languages, however, these methods do have tools and infrastructure to support

software development based on the architecture description.

3.2 Distributed Systems Architecture

The need for sound software architecture becomes even more critical when the soft-

ware is distributed, and recent work on distributed systems architecture was the pri-

mary influence in beginning the research described in this thesis. Distributed systems

architecture is a relatively new field of research. Literature in the field concentrates on

the need to abstract over the implementation detail of a distributed system and capture

the essential high-level features. This high-level description should then be mapped

onto lower-level software and communication protocols.

Research in distributed systems architecture has grown from the need to step back

from the protocol-level approach taken in many early distributed systems. This process

of abstraction allows the designer to concentrate on distributed application require-

ments rather than the nuts-and-bolts of distributed systems construction. It can also

enhance portability, with the design not dependent on a particular underlying system.

The ANSA architectural model[86] is widely considered to be the earliest work in

this field. It introduced the idea of having five viewpoints, namely Enterprise, Infor-

mation, Computational, Engineering and Technology. Each viewpoint focused on a

specific set of concerns related to a distributed application.

An ISO standardization process for the architecture of Open Distributed Systems

was established, and the ANSA model was very influential in the production of this

standard. The standard has since been released, and is a four-part standard entitled The

Basic Reference Model of Open Distributed Processing[63, 105] or RM-ODP. The pri-

mary goal of the model is to provide a framework for building distributed programming

environments that capture a set of standard architectural principles.

31

The CRC for Distributed Systems Technology (DSTC) participated in the RM-

ODP standardization process and developed the A1 Architecture Model[11] to fuel

that participation and meet the needs of their organization. The following subsections

discuss the A1 model, RM-ODP, and related work in more detail.

3.2.1 Reference Model of Open Distributed Processing

Work on RM-ODP[63, 105] began in the late 1980s with the establishment of an

ISO/CCITT standards working group. The bulk of the standardization exists in the

definition of computational and engineering viewpoints taken from the ANSA model.

The computational viewpoint focuses on the interfaces of objects and interactions be-

tween objects. Three types of interfaces are permitted:

1. operational interfaces, which exhibit RPC client or server behaviour;

2. stream interfaces, which exhibit producer or consumer behaviour;

3. signal interfaces, which allow the description of any behaviour, and require an

explicit binding object;

The behaviour of bindings between operational interfaces and stream interfaces are

prescribed by the standard. Signal interfaces only describe local interface behaviour,

allowing interaction behaviour to be specified in an explicit binding object. An explicit

binding object is equivalent to the connectors used in the software architecture research

discussed in the previous section.

The engineering viewpoint describes a model for distributed systems infrastruc-

ture, focusing on the creation and maintenance of bindings between interfaces. In

effect, this viewpoint is where where the software architecture is mapped onto a dis-

tributed systems infrastructure.

3.2.2 The A1 Architecture Model

The A1 Architecture Model[11] departs from the ANSA viewpoints and focuses on

two sub-models: a specification model and an infrastructure model. The specification

model is used to describe the abstract architecture of a distributed system based on the

32

concepts of object, interface and binding. Objects encapsulate application functional-

ity, interfaces describe the interaction of an object with its environment, and bindings

describe the context for interaction between objects. The specification model is sim-

ilar in many respects to the RM-ODP computational model, but is more flexible and

does not prescribe semantics for operational (RPC) or stream behaviour. The explicit

use of bindings in the specification model was influential in the addition of signal in-

terfaces to the RM-ODP—early versions of RM-ODP allowed only operational and

stream interactions.

The infrastructure model describes a general architecture for distributed systems

infrastructure and a mapping between specification model entities and this infrastruc-

ture. It is quite similar to the RM-ODP engineering model, but is less prescriptive. The

A1 model does, however, make explicit statements about the relationship between

entities in the infrastructure and specification models.

In chapter 4, this thesis refines the specification model to generate a semantic

model for describing distributed applications. The semantic model focuses on de-

scription of behaviour for bindings and interfaces. The A1 model has also given

rise to other work, including an architecture for resource discovery[73], an architec-

ture for business contracts[95], a type model[20] and an infrastructure that reflects the

model[6].

3.3 Coordination

Coordination languages and models complement the recent work in software architec-

ture for distributed systems. This research discipline focuses on the need to program

the interaction between software components in a way that distinguishes component

behaviour from interaction behaviour. This separation of concerns maps nicely onto

the A1 model concepts of object, interface, and binding.

Research into coordination and coordination languages began with Linda[46]. Linda

is a language for parallel and distributed systems based on the notion of a shared tu-

ple space. Linda includes a set of basic operations to add to and retrieve from the

tuple space. Tuples to be retrieved are selected by regular expressions. The primary

33

advantages of Linda are the cleanness and simplicity of its model and the decoupling

provided by anonymous communication. The primary difficulties are:

1. Any problem that requires an explicit locality (e.g. multiple tuple spaces), real-

time constraints, or sorting of tuples is inherently difficult because of the Linda

model[5, 21].

2. Efficient implementation over a distributed system is difficult because of the un-

derlying shared memory model which requires reliability[111], and the inherent

unreliability of a large network like the Internet.

3. The coordination aspects of an application written using Linda are embedded in

the application—there is no explicit representation, hence it is difficult to reason

about application interactions without involving the applications themselves[5].

Recent work in coordination languages and systems has moved in a direction more

similar to architecture description languages, and has been influenced to some extent

by RM-ODP. Relevant examples include:

ConCoord[60], which provides a flexible language environment for program-

ming both objects and their coordination. Object interfaces are described by

ports and states, with an explicit termination state. The coordination language

(CCL) describes the connection of ports and the datatypes passed over the con-

nections. It allows the organization of coordinators into hierarchies, providing

scalability and abstraction. The language has a fixed set of data types, and ap-

pears oriented towards pipe/filter architectures.

The Coordination Language Facility (CLF)[3], which uses a process-oriented

language to coordinate interactions between objects based with CORBA inter-

faces. The facilities for coordination allow intelligent configuration of objects

based on declarative rules. It supports only RPC-style interaction between ob-

jects.

Contracts[58] which is coordination language intended for non-distributed ob-

ject systems. This language is one of the earliest examples of the separation

34

between components and their connectors, but does not address distributed sys-

tems issues.

LAURA[71], which is an object-oriented variant of Linda that implements an

offer space based on the RM-ODP Trader, and supports anonymous operational

(RPC) interaction with that offer space.

All of these examples, while advancing research in this arena, are intended for

tightly coupled interaction. They are not generally sufficient to support the loosely

coupled, dynamic, and unreliable interactions that occur in large-scale distributed sys-

tems.

3.4 Component Systems

The notion of “components” has recently emerged as the underlying architectural ab-

straction for many distributed systems and supporting infrastructures. The definition

of this abstraction is widely argued but captured well in [126]. Component systems

focus on the need to connect peer components to build large software systems, and

typically go hand-in-hand with object-oriented systems. A component is defined by

the set of methods it offers to its environment, and the set of methods it expects the

environment to offer in return.

There are some significant advantages associated with components. The primary

advantage is that a component is self sufficient except for the explicitly defined interac-

tions with its environment. Such a clear definition of dependencies makes components

considerably easier to reuse than traditional objects, which tend to have dependencies

buried deep inside an inheritance hierarchy. Components also tend to be self describ-

ing, allowing the environment to ask the component to describe its interface and hence

promote dynamic coupling of components[107].

The self-sufficiency of components reflects the principles of the architecture de-

scription languages discussed in section 3.1. The key area of research in component

systems, however, is the problem of interconnection. Direct connection of components

using local or remote method invocation is provided by most environments[107, 123].

35

While this is suitable for new, tightly-coupled applications, the connection of exist-

ing, loosly-coupled components (i.e. legacy components) requires adaptor objects and

such services as “bean boxes”[123]. Adoption of the notion of connectors from archi-

tecture description languages is not yet a widely supported technique, although some

researchers have addressed the issues[58]. Distributed support for connectors is mini-

mal or non-existant.

A further key deficiency of component systems is the lack of facilities for decrib-

ing interface semantics above and beyond method signatures. It is not possible, for

example, to describe the implicit relationship between data elements in streaming be-

haviour: only a method to accept a data element can be described.

3.5 Interaction Paradigms for Distributed Systems

Research into distributed systems has been carried out for several decades. Litera-

ture in the field encompasses detailed discussion of low-level protocols, the design of

infrastructure services to support distributed systems, and appropriate languages and

interaction paradigms for programming distributed applications.

A key contribution of this thesis is the emphasis it places on supporting differ-

ent interaction protocols and paradigms in distributed systems. The following sub-

sections discuss the interaction paradigms and programming abstractions that have

emerged from distributed systems research and discusses their relative strengths and

weaknesses. The goal is to emphasize that there is no single interaction model or

abstraction that satisfies all needs.

3.5.1 Remote Procedure Call

Remote procedure call (RPC)[15] is perhaps the most popular interaction protocol be-

cause of its similarity to local procedure call. Use of remote procedure call typically

involves the definition of remote procedures using an interface definition language

(IDL) and the creation of program stubs that approximate local procedure call seman-

tics for the client (caller) and server (receiver). It is therefore relatively easy to modify

existing programs for distribution.

36

Many flavours of RPC exist, each providing different semantic guarantees and

data typing. CORBA remote method invocation[98], for example, has a strong object-

oriented flavour and supports multiple programming language bindings, where DCE

RPC[110] is relatively unique in its support for data pointers. SunRPC[124] is perhaps

the most widely used because reference implementations are freely available. SunRPC

is the basis for a number of common distributed services, including the Network File

System (NFS).

While RPC is generally easy to use, it is not suitable for all applications. In partic-

ular:

RPCs are inherently synchronous, which limits opportunities for parallelism and

causes performance problems on networks of high latency.

RPC implies procedural interaction, so are unsuitable for applications requiring

streamed data, for example.

RPCs are directed, in that they require explicit identification of the server by

the client. Anonymous or mediated communication gives considerably more

flexibility and opportunity for reuse of application components.

3.5.2 Message Passing

Message passing is also quite common in distributed applications and environments.

Message passing is used instead of RPC where the interaction model is not strictly

synchronous or parallelism in communication is required.

PVM[125] is a commonly used distributed environment based on message pass-

ing, with a focus on high-performance parallel programming. Reliable, transactional

message passing is provided by environments such as IBM’s commercial MQ-series

product[50]. At an abstract level, electronic mail (email) is a form of asynchronous

message passing, and this has gained wide acceptance in both research and commer-

cial environments.

Message passing can also provide a basis for the streamed communication, al-

though it is more common for stream-oriented communications to be provided explic-

37

itly by an environment. Message passing has some drawbacks in distributed applica-

tions, particularly:

Message passing is relatively low-level and provides minimal abstraction for

higher-level application protocols.

As with RPC, message passing is directed, requiring explicit identification of

the receiver and constraining reuse of application components.

3.5.3 Multicast

Multicast communication protocols have been an area of active research for some time.

Multicast typically extends message passing with some notion of distributed, address-

able process or object groups. Many protocols and implementations exist, for example

in Isis[13], Psync[100], Electra[82], Horus[130] and PVM[125]. The focus of most

implementations is on providing reliability through replication. Perhaps the most dif-

ficult aspect of providing multicast is choosing an appropriate semantics, that is, how

the ordering and delivery of messages is coordinated by receiving objects. It is gener-

ally accepted that no single model is appropriate for all applications[14, 12, 27].

Multicast provides a level of indirection over message passing, but most imple-

mentations require that participating objects are explicitly aware of the communication

model. This typically means that application components are programmed with im-

plicit knowledge of the multicast semantics and can be difficult to reuse in a different

communications environment.

3.5.4 Streams

Communicating with data streams has traditionally been the realm of telecommuni-

cations providers connecting hardware devices. With the rapid increase in bandwidth

available for data communications, audio and video conferencing applications like

VAT[64], VIC[90] and NV[43] have appeared, but they have been programmed di-

rectly on the transport layer.

A stream abstraction is a necessary component of modern distributed systems[17,

53], and it is clear that quality of service properties must be supported. Few dis-

38

tributed environments provide explicit support for data streams, although DCE[110]

has a functional implementation without quality of service support, and the RM-ODP

model explicitly describes stream communication.

3.5.5 Replication

Replication is a commonly used technique in distributed systems. There are many vari-

ants, particularly in the way access to replicas is synchronized. Highly-synchronous,

single-copy equivalent replication is ideal, but near-impossible to achieve efficiently

over an unreliable network. More practical implementations allow some level of di-

vergence between replicas, for example CODA[114], Bayou[128], lazy replication[76]

and Prospero[35].

System support for replication usually provides a single semantic model with the

better implementations allowing significant configuration. Recent research in CSCW

[52] suggests that, as with multicast, no single replication model is appropriate for all

applications.

3.5.6 Distributed Shared Memory

Distributed shared memory implementations are an abstraction over replication schemes

that allow distributed application components to interact through a synchronous, log-

ically shared, address space. The granularity of access ranges from logical program

variables in PARLOG[32] to a shared tuple space as used in Linda[46]. These tech-

niques provide a simple and familiar abstraction for programmers, but do not scale

well or cope with unreliable networks because of the need for regular synchronization

to ensure the consistency of the memory space. More recently, the concept of dis-

tributed shared memory has been popularized by JINI[131], yet it retains the inherent

limitations described.

3.5.7 Distributed File Systems

While not strictly an interaction paradigm, distributed file systems can provide a con-

venient mechanism for collaboration. People or applications can share data through ac-

cess to files that are either replicated, cached locally, or served as required. Distributed

39

file systems are very similar to distributed shared memory, except that they typically

allow some level of divergence to reduce synchronization requirements. Since they

use a standard file system interface, distributed file systems can be used by existing

applications transparently.

NFS[113] is the most common implementation, and due to its stateless architec-

ture it is highly resilient to failure. It uses minimal caching, however, and hence re-

quires reasonably high bandwidth and cannot support disconnected operation. SMB

[92] provides a similar implementation with a focus on PCs rather than Unix worksta-

tions. AFS[61], CODA[114] and Ficus[57] are examples supporting replication and

disconnected operation. Although it is not strictly a distributed filesystem, the CVS

configuration management system[8] uses replication and merging to allow multiple

people to work with their own copies of files concurrently.

Distributed file systems are convenient mechanisms for interaction between peo-

ple, but they do not capture or help manage the complexity of that interaction, nor do

they support stream-based interaction. The input/output overhead also tends to be too

slow for real-time access to data, thus requiring the addition of caching semantics.

3.5.8 Transactions

Consistency of information is a key requirement for many business systems. In dis-

tributed systems, this requirement is typically satisfied by providing a transaction sub-

system with some level of guaranteed consistency. In centralized systems, the usual

requirement is that transactions satisfy the ACID properties[24]. This can be provided

in distributed systems using two-phase commit[51], but the cost in communications

bandwidth, efficiency, and latency is relatively high.

A wide variety of methods for weakening the ACID properties in a controlled man-

ner have been described, including several variants of nested transactions[39], lazy

replication[76], transactional workflows[48] and transactional messaging[50]. Each

have their relative strengths and weaknesses, and are appropriate for different applica-

tions.

More recently, research in distributed systems has focused on ways of integrat-

ing arbitrary transaction models into a unifying framework, including ACTA[30] and

40

TSME[47] . These frameworks are typically implemented over an interaction model

like message passing or RPC.

3.5.9 Event-based Interaction

The use of events for reporting and control is a well-understood technique. More re-

cently, however, researchers and programmers have begun using event-based interac-

tion for programming distributed applications. Objects interact with their environment

by producing and consuming events, with produced events routed to the required set

of consumers by a mediator.

A common model is the publish-subscribe model[75, 87], where consumers se-

lect events by subscribing to some class or pattern of events via the mediator. Any

produced event that matches the pattern is delivered to the consumer. This model of

anonymous communication is very powerful, but it is difficult to capture the applica-

tion architecture and communication patterns from a set of subscription requests.

A more powerful model is implemented in Rapide[80], where the routing of events

is explicitly specified by declarative rules. Rules in Rapide are specified as trig-

ger/action pairs, where triggers are event patterns that must be matched. The current

implementation of Rapide supports simulation and analysis rather than a runtime in-

frastructure for programs.

Event-based models are highly flexible and promote reuse because communica-

tion between objects is directed by a mediator rather than the objects themselves. This

means that participating components are decoupled from the routing of communica-

tions, and hence promotes reuse by allowing components to be arbitrarily connected.

The inherent asynchrony of event-based systems also makes them more amenable to

high-latency, unreliable networks. The primary difficulty with event-based models is

that they are less familiar to programmers and hence require a change in design and

coding habits.

3.5.10 Connection-based Interaction

Connection-based interaction explicitly connects behaviours specified at the interfaces

of components. As with event-based interaction, objects do not name the recipient of

41

communications, which decouples the objects and hence promotes reuse. The power

of this approach depends on the range and flexibility of connectors. A number of

systems that implement this approach are described in sections 3.1 and 3.3.

Connection-based models are particularly useful for stream-oriented or pipe/filter

architectures. They are more flexible than models based on directed communication,

but still suffer from the need for strict compatibility of connected interfaces since com-

munications are not mediated. They are also less abstract than event-based models,

providing fewer opportunities for optimization.

3.5.11 Intelligent Agents

Intelligent agent technology[135] provides tools for defining highly adaptable soft-

ware agents to represent people, organizations, or software components in interactions

with external parties. In terms of distributed systems, agents therefore present an ex-

ternal interface for interaction in a distributed systems. The technologies typically

include some form of agent communication language or primitives for communication

between remote agents. A common language is KQML[88], which is a high-level and

quite flexible language for expressing queries between intelligent agents. Communi-

cations are strongly directed, and the language relies on statically-defined interaction

protocols specified outside the language, with a standard set based on existing inter-

action protocols. April[89] is an older language that includes both agent and commu-

nication primitives, with communication behaviour described in terms of messages, a

message buffer, and pattern matching across that buffer.

Intelligent agent systems are typically single-language environments focused on

the resolution of complex problems using artificial intelligence techniques. As such,

they do not provide a generic platform for distributed systems, but the approaches

embody many useful techniques for abstracting and managing communications.

3.5.12 Mobile Agents

Mobile agents build on intelligent agent technology and augment or replace remote

agent communication with the ability of an agent to be moved from one platform

to another and thus communicate directly with local software systems. Distributed

42

applications written using a mobile software agent approach rely on creating self-

contained, autonomous, mobile software objects that can be passed between cooperat-

ing systems[29]. The key abstraction is that both data and code (information and oper-

ational semantics) are passed between systems, thus preserving the consistency of the

data. This approach is very effective in purpose-written and tightly-coupled systems. It

suffers, however, from the inherent problem of requiring significant trust across all par-

ticipants (you can never guarantee that a participant respect agent “boundaries”)[28],

and that all systems must provide a consistent environment for execution of the agent.

3.6 Distributed Systems Infrastructure

Distributed systems infrastructure or middleware provides the basis for implement-

ing the programming abstractions described in the preceding section. A number of

middleware platforms from both research and commercial projects are described in

this section. The previous section showed that the set of useful interaction models is

quite large and growing. This section highlights the fact that most existing middleware

platforms provide only a small set of static interaction models.

Early efforts in distributed systems tended to focus on tightly integrated envi-

ronments for programming parallel and distributed applications, predominantly dis-

tributed operating systems like Ameoba[127] and V [26] and closed language environ-

ments like Emerald[16], Argus[79] and Orca[7]. The closed nature of these environ-

ments made it difficult to introduce distributed applications into the regular operating

environments of computer user, although many significant advances resulted from the

research.

The increasing focus on openness in recent years, evidenced by strong support for

both de-jure and de-facto standards like CORBA[98], DCE[110] and SunRPC[124],

has led to a more open approach that extends existing programming and operating

environments. Distributed system infrastructures provide a programming environment

and set of services for building and deploying distributed applications. The services

and programming environment vary widely between systems, depending on the focus.

This section describes a number of distributed system infrastructures from both

43

research and commercial organizations. The assertion from section 1.2 of chapter one

suggests the need to support flexible interation paradigms, so this assessment has a

focus on that requirement. Note the intention of the section is to provide an overview

of available technologies, so many existing systems are not described.

3.6.1 Commercial Environments

SunRPC[124] from Sun Microsystems was the first widely used environment for dis-

tributed applications, and many applications based on SunRPC are still in widespread

use, in particular NFS. As the name suggests, SunRPC is based on the remote proce-

dure call paradigm, and includes an IDL compiler, a data description language (XDR),

a rudimentary naming service, and hooks for implementing security. It provides no

support for message passing or other interaction protocols, but does allow selection of

transport protocols. The RPC semantics depend on the transport chosen. SunRPC is

intended for the C programming language only.

DCE[110] from the Open Software Foundation (OSF) attempted to address some

of the deficiencies of SunRPC by providing a similar RPC-based system with strong

security, a distributed name service, a time service, and support for stream interfaces.

DCE was also designed specifically for C language programming. DCE has largely

been overtaken by CORBA compliant products and Microsoft’s DCOM (a derivative

of DCE) in recent years.

CORBA[98] from the Object Management Group (OMG) is a consortium standard

defining an interface definition language, remote object invocation semantics (based

on RPC), and multiple language bindings to provide language independence. A va-

riety of implementations exist in multiple programming languages including C, C++,

Smalltalk and Java. In conjunction with CORBA, OMG is currently defining a num-

ber of standards for system services, including naming, event management, security,

transactions, and an RM-ODP compliant trading service. CORBA is still limited to

an RPC style of interaction, although recent work on event services is addressing this

deficiency to some extent.

Lotus Notes[85] is a system that supports distributed applications through a file

replication and workflows. The environment provides minimal facilities for building

44

distributed applications, but is significant because of its wide acceptance and use in

commercial organizations.

Tuxedo[2] is one of several transaction-oriented distributed commercial distributed

environments. It is primarily concerned with building so-called 3-tier applications,

where a database-oriented client application is shielded from the details of database

access by a middle-tier that encodes business processes/rules and consistency require-

ments. Tuxedo provides tools for building the middle tier, including support for dis-

tributed transactions using two phase commit, a publish/subscribe mediator, and trans-

actional messaging. Transarc Encina[119] provides a similar infrastructure.

3.6.2 Research Prototypes

Amoeba[127] is a distributed operating system from the Vrije Universiteit, Amster-

dam. Although not supporting an open systems model, ideas from Amoeba have been

very influential in distributed systems research. Its facilities include a distributed pro-

gramming language Orca[7] based on distributed shared memory, transactional filesys-

tem access using optimistic concurrency control, and high-performance, reliable mul-

ticast. Its interaction model at the programming level is predominantly based on RPC.

The V distributed operating system[26] provided similar facilities.

Isis[13] and Horus[130] are research prototypes from Cornell University provid-

ing toolkits for distributed systems based on reliable multicast and virtual synchrony[14].

Isis has been developed into a commercial prototype, with Horus being used as the

vehicle for more recent research results. Horus provides a selection of possible seman-

tics for multicast, each aimed at different applications. Both systems provide only a

group communication abstraction, which limits their usefulness for general distributed

systems construction. The ordering guarantees associated with the multicast semantics

make these systems excellent for high-availability applications in a local-area network,

but can impose severe performance penalties in low-latency, unreliable networks. Sim-

ilar facilities are also provided by a number of other toolkits, including Electra[82] and

it’s commercial derivative iBus[83].

ILU (inter-language unification)[66] is a distributed systems toolkit from Xerox

Parc aimed at providing language-independent development of distributed applica-

45

tions. It is based on the RPC interaction paradigm, and is similar in many respects

to CORBA. It can interoperate with CORBA applications, but provides stronger com-

patibility guarantees than CORBA through static checking of strongly typed interfaces.

PVM (parallel virtual machine) provides a library and services for building parallel

programs over a network of workstations. It provides message passing and multicast

communication, and a number of high-level primitives for managing consistency and

supporting parallel applications. Libraries for Fortran, C and C++ are available. PVM

is widely used in parallel programming since it is efficient and freely available. The

PVM protocols are targetted at high-speed local area networks and as such, it is not

generally suitable for high-latency, unreliable networks like the Internet.

Hector[6] is an environment supporting the principles of the A1 model. Arbi-

trary interaction protocols are supported by having component interfaces connected by

bindings. Interfaces are implemented as parallel state machines, with binding seman-

tics (interaction protocols) supported by passing messages between the state machines

of distinct interfaces. Arbitrary transport protocols can be plugged in to support reli-

ability and other constraints. The environment is written in Python[81] and at present

requires hand-coding of state machines and interaction protocols.

3.7 Computer Supported Cooperative Work

A final influence on the work reported in this thesis has been recent research into

systems supporting cooperative work, otherwise known as CSCW systems. These sys-

tems tend to put heavy demands on distributed systems infrastructure, and researchers

in this field are openly critical of existing distributed systems, in particular, the lack

of flexibility and programmability in the interaction models provided[17]. Their criti-

cisms provide motivation and direction for the thesis.

Research into computer supported cooperative work (CSCW) is carried out by an

eclectic mix of researchers from various fields including computer science, sociology,

ethnography and education. The primary aim of CSCW applications is to support

cooperation between people through computer hardware and software. Most CSCW

applications also aim to support physically distant cooperation and hence require a

46

distributed systems infrastructure. The following subsections discuss CSCW literature

relevant to the construction of distributed systems infrastructure for CSCW applica-

tions.

3.7.1 CSCW Systems and Sociological Theory

There has been a significant evolution of CSCW systems in the last five years. Early

systems attempted to formalize work practices in static, rigid environments. To a

large extent, these systems were unsuccessful because of their inflexibility. CSCW

researchers looked for theories and models that could guide the construction of more

flexible and workable systems. Speech act theory[133] was embodied in a number of

implementations, for example, Conversation Builder[69] and ActionWorkFlow[91].

While more flexible than the previous attempts, these were still relatively unusable

because they relied on the ability to formalize work processes.

The sociological theory of Strauss[122] suggests that work processes are inher-

ently driven by continuously evolving social structures. Contingencies are also the

rule rather than the exception, suggesting CSCW systems that do not support continu-

ous evolution of the work process are unlikely to be successful. The theories of Strauss

are supported by experience with CSCW systems[67].

CSCW systems are now beginning to take these issues into account, and focus

on providing tools to facilitate interaction rather than tools that constrain interaction,

or in other words, providing tailorable mechanisms not policy. Approaches based on

interaction through shared workspaces like wOrlds[42], DIVA[120], POLITeam[72],

TeamRooms[109] and MASSIVE[53] support these principles. A key issue in these

systems has been the implementation of awareness mechanisms, allowing participants

to be aware of each other’s actions.

A weakness in shared-workspace models is that they constrain interaction to a

virtual space and do not adequately capture the social aspects of work. Recent work

reported in [41] and [56] suggests that these spatial models need to be replaced or over-

laid with models that capture the overlapping social groupings that exist independent

of location. Orbit[68] is a research prototype that provides non-spatial mechanisms

allowing users to participate in many social groups concurrently, but continuing to use

47

a spatial techniques to group related resources.

3.7.2 CSCW Toolkits

CSCW toolkits provide libraries and tools that implement programming abstractions

suitable for constructing CSCW applications. These toolkits are often equivalent to

distributed systems infrastructures, but with a focus on interaction mechanisms needed

for CSCW applications including multicast, replication, floor control mechanisms, and

event-based awareness mechanisms. GroupKit[108], Intermezzo[38], COAST[115]

and Habanero[96] are examples. The fact that these toolkits exist suggests that exist-

ing distributed systems infrastructures do not provide appropriate support for CSCW

applications. Even custom-built CSCW toolkits suffer, however, from rigidness of im-

plementation that makes it difficult to customize them to support the requirements of

varying applications and work practices[36].

3.7.3 CSCW Criticism of Existing Distributed Systems

CSCW researchers are openly critical of the support for CSCW provided by exist-

ing distributed systems. Paul Dourish in his PhD thesis[36] promotes the principle

of Open Implementation[70] for CSCW systems. This principle suggests that toolkit

implementations and infrastructures should be accessible for configuration and mod-

ification through a meta-object protocol. Dourish notes that although he could exert

considerable control over local object access in the CLOS language environment, he

had no control whatsoever over the communications infrastructure used to interact with

remote objects.

Similarly, in a critique of the wOrlds prototype[67], it was noted that although

CORBA and related OMG technologies provided a seamless distributed programming

environment, they have a fixed interaction model that did not scale or cope with unre-

liable communications.

Greenhalgh and Benford[53] in their implementation of aura management in MAS-

SIVE found that the directed and synchronous nature of RPC was inappropriate for

many aspects of their application. As a result, they suggest that distributed systems

need a “richer communications model” to adequately support CSCW applications.

48

Blair and Rodden[17], in their discussion of the use of RM-ODP for CSCW sys-

tems, point out substantial deficiencies in that model, particularly in support for group

work in the areas of transactions, security and management. They also highlight the

need to avoid “overly prescriptive” viewpoint language specifications, and the need to

support multimedia, multiparty communications.

These and other experiences make it clear that a key requirement for distributed

systems infrastructure in CSCW systems is to provide flexibility and openness in defin-

ing communication and interaction models.

3.7.4 Languages for Describing Collaboration

To overcome the lack of flexibility in infrastructure implementations, a number of

systems have experimented with the idea of programming collaboration mechanisms.

These systems are quite similar to the coordination languages described in section3.3.

DWCPL[33] is a custom-built language for building synchronous collaborative ap-

plications by programming the interactions between objects. The language provides a

relatively high-level abstraction of collaboration, and has good facilities for structur-

ing and reuse. Its usefulness is limited by its focus on synchronous applications, thus

making it difficult to use for asynchronous group work.

Trellis[44] is a language based on petri-net semantics and is used to describe col-

laboration protocols. Its primary aim is to support flexible collaboration protocols with

a graphically oriented tool, allowing modification by users. The implementation is po-

tentially useful for simple workflows and collaboration protocols, but suffers from a

number of limitations, including a static set of states and a lack of facilities for struc-

turing and abstraction.

Introspect[129] is a process specification and execution environment based on

Smalltalk and wOrlds[42]. It uses a graphical notation based on Harel statecharts[55]

to describe processes for collaboration. The notation includes hierarchical structur-

ing and a reflective architecture allowing on-the-fly modification of behaviour. It also

attempts to capture the Strauss[122] notion of trajectories that span workspaces and

social groups. The system uses a centralized server architecture, however, making it

difficult to operate in an unreliable network.

49

3.8 A Scaffolding supporting Finesse

This chapter has described research and technology in distributed systems to provide

a technological basis and motivation for the Finesse approach. From this discussion,

we suggest that the surveyed technologies do not address the assertions specified in

chapter 1. In particular:

Coordination languages, while supporting the necessary flexibility in component

relationships, are not able to deal with high latency and network failure, thus the

assertion of 1.3 is not satisfied.

Existing distributed infrastructures can deal with latency and network failure,

but fail to provide the necessary flexibility of interaction or the ability to capture

interaction paradigms at a sufficiently high level of abstraction, thus the assertion

of 1.2 is not satisfied.

CSCW applications and toolkits are typically built on the platforms above and

inherit their restrictions.

The work on software architecture and architecture description languages suggests

the path forward: flexible definition and programming of interaction semantics for

distributed components. Distributed component systems go some way towards realis-

ing the goal through the explicit capture of dependencies in interfaces. The following

chapters of this thesis describe how the Finesse system extends these approaches to

satisfy the key assertions of chapter 1

50

Chapter 4

Semantics of Behavioural Model

Chapter 2 gave a high-level overview of the Finesse system. In this chapter1, the exe-

cutable semantic model associated with binding behaviour is specified, first informally

and then formally using the Z specification language. The focus in this chapter is on

the model of behaviour associated with the Finesse system, that is, realising causal,

parameter and timing relationships between events. The binding/interface/role struc-

turing described in the chapter 2 is of minimal significance, and the semantic model

described here could quite conceivably be used within a different architectural context.

The semantic model presented has emerged from the examination of distributed

systems architecture and the realization that static, end-to-end models of interaction

like remote procedure call make it difficult to interconnect systems. Early influences

include the ISO Basic Reference Model of Open Distributed Processing [63] and the

A1 model [11, 102], in particular the the notion of a “binding object”. The Finesse

language introduced in chapter 2 was devised to program binding objects, and during

this effort it was realized that a distributed, asynchronous execution model was both

possible and desirable. Investigation of similar work in coordination languages showed

that most execution models were based either on relatively static connections [4, 60]

or required a shared global state abstraction, for example systems based on the Linda

tuple-space model [23, 22, 34]. Architecture description languages provided some

insights, in particular Rapide [80] and Wright [1], yet had no concrete distributed

1This chapter is an extended version of a paper published at the Fifth International Symposium on
Autonomous Decentralized Systems[10]

51

execution semantics. Simulations of architectures are certainly possible, but again rely

on a centralized notion of state.

The key distinguishing feature of the model is in describing a distributed, asyn-

chronous execution semantics for binding behaviour. The underlying behavioural

model bears a strong resemblance to event structures [134], but no existing work ad-

dresses the execution of these semantics in an asynchronous distributed environment.

It could also be argued that Petri nets[99] provide an equivalent execution model.

While a Petri net specification can be executed in a distributed manner, the Petri net

abstraction imposes constraints forcing the co-location or synchronization of certain

subsets of behaviour. In addition, the mapping between a Petri net abstraction and

typical programming constructs is non-trivial. This is evidenced by the fact that no

widely known coordination language or architecture description language uses a Petri

net semantic model. The model presented in this chapter is more approachable and

avoids these constraints.

In describing the Finesse semantic model, we begin by describing a model for

concurrent programs then apply it, with some modification, to distributed programs.

The key feature of the model is that with minor constraints, distributed participants can

proceed entirely asynchronously except where synchronization is explicitly specified

by the program. In other words, the execution model provides a semantic basis for an

asynchronous distributed state machine. The following sections informally describe

this model in more detail, discussing its properties, strengths, and weaknesses. A

more formal description is given beginning in section 4.8.

4.1 Base Execution Model

The semantic model is based on the execution of event templates to create events.

Event templates describe causal, parameter and timing relationships between events.

An execution of a program executes these templates in a manner consistent with the re-

lationships. The resulting program execution is represented by a graph with each node

in the graph representing an event, and each arc representing a causal dependency and

hence ordering relationship between the source and destination events. Concurrency is

52

captured by branching in the graph. A simple program execution is depicted in figure

4.1. As suggested previously, this model of concurrent computation is closely related

to that modeled by event structures[134].

time

e1 e2

e3

e4

e5

e7

e6

Figure 4.1: Event Execution Graph

The graph in figure 4.1 represents a historical view of an execution, that is, it

represents an execution that has occurred. Each event in the graph describes a single

occurrence or action. It has a set of causal predecessors which are the sources of

incoming arcs in the execution graph, and a set of causal successors, which are the

targets of outgoing arcs in the execution graph.

An event also has a set of attributes. These attributes represent information asso-

ciated with the occurrence of the event, for example, the time at which it occurred,

or programmatic data generated by its occurrence. The event attributes and its causal

predecessors are immutable: they cannot be changed once the event has occurred. The

combination of event ordering and attributes is used to describe a program execution.

The preceding model is only able to describe the completed execution of a pro-

gram. To enable the description of executable programs using this base model, we

introduce a notion of event templates and a history. Event templates define the possi-

ble future events than can occur, and the history defines the graph of events that have

occurred. Figure 4.2 depicts this model, with the dotted lines between events in the his-

tory and templates representing offers of dependency from events to templates. These

offers can be understood as program sequencing instructions and will be explained in

more detail in subsequent sections.

A program executes by choosing templates that are enabled by the history and

executing them. The resulting events are added to the history with incoming arcs

53

timenow

e1 e2

e3

E4 E7

E6

E5

Figure 4.2: Execution State with Templates

reflecting on the offers chosen when the template is executed. For example, if template

E from figure 4.2 is executed, the new state of the execution is shown in figure 4.3.

time

e1 e2

e3

E7

E6

E5

now

e4

Figure 4.3: Event E Executed from Template

4.2 Templates describe Programs

Templates allow us to describe programs by capturing both ordering and attribute con-

straints for the events that constitute a program execution, without being tied to a

particular occurrence. If we allow for conditional execution of templates, a template

must also capture the guards representing program conditions. A program is thus a set

of templates. In chapter 5, a language is presented that maps language primitives to a

set of such templates.

A program executes by instantiating an empty history, then executing those event

templates that are initially enabled, which enables further templates, and so on. It-

eration is possible through the re-enablement of a template by subsequent template

54

execution. In a program execution, a template can be executed when a set of causal

predecessors satisfies its incoming ordering constraints and any guards. The template

must therefore contain a description of the necessary causal predecessors and guard

conditions.

In order for a program to execute an event, it must also assign attributes to the

event. The template can constrain the values of those attributes. Typically, such con-

straints will allow the program to deterministically assign a set of values to event at-

tributes, or in other words, the template will specify values for attributes. These at-

tribute specifications can include references to attributes of causal predecessors, thus

decribing the flow of data between events.

It is important to note that template specifications must be independent of spe-

cific events. Guards and attribute constraints in a template can therefore only refer to

templates. To map these template references to event instances and their attribute val-

ues, events must capture their association with a template, and the guards and attribute

constraints on a template must be satisfied by the events offering their causality to the

template at execution time.

In a sequential program, this would be sufficient information for program execu-

tion because events execute in a total order. The presence of concurrency requires that

we allow the execution to split into concurrent execution threads. We describe this by

having each template describe the finite set of possible, immediate causal successors.

When the event is executed, these become the unterminated arcs and can be thought of

as offers from the event to future events. The offers can be used to satisfy the causal

predecessor relationships of templates and thus allow the execution of those templates.

The set of causal predecessors and successors associated with a template can involve

choices and be non-deterministic, for example, logical AND, OR and XOR relation-

ships between the possible predecessors and successors. This can result in mutually

exclusive predecessor relationships, and most importantly, mutually exclusive offers to

successors. Figure 4.4 illustrates the logical conditions that might exist across causal

successors or predecessors. In this case, both e and e must follow e , only one of e

and e can causally succeed e , and e can be enabled by either or both of e and e .

The combined specification of causal predecessors, causal successors, guards and

55

time

e1 e2

e3

E7

E6

E5

now

e4

and)
xor)

(or

Figure 4.4: Non-deterministic execution

attribute constraints fully describes a template. A program is described by a set of

templates where all contained references to other templates are satisfied by the set.

The causal predecessors and causal successors capture causal relationships between

events, while the guards and attribute constraints capture the timing and parameter

relationships.

4.3 Program Execution

As previously suggested, a program execution begins by instantiating an empty his-

tory and executing any templates that are initially enabled. These enable subsequent

template executions and so on. A template can be executed if:

1. it has sufficient offers from events in the history to satisfy its causal predecessor

set;

2. the template guard is satisfied, knowing the choice of predecessors; and

3. the execution of the template will not invalidate the causal successor constraints

of any offers that are used.

When executing the template, the execution engine must add an event to the his-

tory with appropriate arcs to event predecessors and future templates, set the value of

the event attributes using the constraints associated with the template and any other

influences (e.g. results of local computations), and update the offers of predecessor

events in the history to reflect the acceptance of an offer by this event. A key issue is

56

that when executing events concurrently, care must be taken to ensure that mutually

exclusive offers made by an event are not accepted concurrently.

The usual properties of concurrent execution are relatively straightforward to cap-

ture in this model, specifically:

A program can terminatewhen the set of terminated outgoing arcs for each event

(accepted offers) satisfies the causal successors constraint of the associated event

template.

A program is deadlocked when no template can be executed now or in the future,

but the program cannot terminate.

A program is livelocked when one or more templates whose execution is neces-

sary for termination cannot be executed now or in the future, yet other infinitely

executable behaviour is possible.

4.4 Parameters

The execution model has thus far focused on the basic control flow associated with pro-

gram execution. With control flow appropriately defined, we can now address the issue

of data flow. Data flow in the semantic model is specified by defining the relationships

between event parameters. The value of an event parameter is set by evaluating such

relationships or assigning a literal or local, environment-supplied value. To simplify

definition of these relationships and make them feasible, we require that any events

referenced in a parameter relationship be causal predecessors, or in other words, pa-

rameter relationships are defined at the successor event and can only refer to events

connected to the successor by the causality graph. This is intuitively correct, since a

parameter relationship implies a causal relationship.

4.4.1 Defining Parameter Relationships

The general form of a parameter relationship is X F Q , that is, the parameter X must

be assigned a value from the set returned by a function F applied to a set of values Q.

The values can be expressed as references to parameters of causally preceding events,

57

literal values, or environment supplied values. While we allow non-determinism in the

value of X by choosing from the set of values returned by F, most implementations

(including the one described in the following chapter) would most likely insist that the

function F return a single value. There are number of advantages in this approach that

should be highlighted:

A program explicitly captures data dependencies in a declarative manner. The

transfer of data from one location to another can thus be optimized. In partic-

ular, it is not necessary for all parameters of an event to be transmitted when

notification of the event is transmitted. Referring back to figure 4.5, event e

might have parameters x y , but if e refers only to y, only y must be transmit-

ted when notifying site of event e . It is also interesting to note that a value

expression can be evaluated at any location, thus allowing a runtime engine or

compiler to determine the most efficient place to perform the evaluation.

Data mismatches between event attributes can be handled without the involve-

ment of components connected by a program. For example, a request event that

outputs a date as a string can be delivered to a receiving component that ex-

presses a date as a number of seconds since an epoch, provided an appropriate

mapping function is defined.

Where the control flow indicates that parameters of multiple events from a single

location are required to evaluate a relationship expression, the event notification

can be delayed until all required local events have been executed and the notifi-

cations combined.

4.4.2 Identifying Event Parameters

A key difficulty in implementing event parameter relationships is identifying the events

whose parameters are to be used. A program is expressed in terms of templates, and

event references can only use template names to identify other events. Given the pres-

ence of iteration and dynamic renaming of templates in the control flow semantics,

rules for mapping template names to event instances must be implemented. Since

these rules do not change the model of parameter relationships presented above they

58

can be implementation-dependent. The following rules, however, are a useful starting

point.

1. In the presence of iteration, the most recent causal predecessor matching the

specified event template name should always be used.

2. Where a role is taken by multiple interfaces (with the implied dynamic renaming

of templates), an implementation should either provide a default rule to choose

a single event from one of the interfaces (e.g. earliest), or allow all event refer-

ences to indicate a set of events, and provide functions for manipulating event

sets. Note that this rule can be implemented at a language level provided the

underlying implementation supports references to event sets.

4.5 Guards and Timing Constraints

Guards in the semantic model are arbitrary boolean expressions that must evaluate to

TRUE for an event to be executed. The general form of a guard is G Q where G is a

boolean valued expression over a set of values Q. The values in Q are specified in the

same manner as those used in parameter relationships, that is, they can be references to

parameters of causally preceding events, literal values, or local, environment-supplied

values. Time is considered one of the local environment-supplied values.

Each event in the history has a timestamp attribute that identifies the time at which

the event occurred. The semantic model also requires that the local environment can

supply the current time on request, and that time always moves forward. These times,

however, are relative only to a reference point determined at program instantiation

time. Guards can include expressions that constrain the elapsed time since a previous

event or a well-known epoch, but constraints on absolute time cannot be used in guards.

For guard evaluation, the semantics requires that the current time since the agreed

epoch is an environment supplied value.

The use of time and event references in guards has some interesting consequences,

particularly:

Guards have a time dimension, meaning that a guard that is FALSE at a certain

time can subsequently become TRUE due to the passage of time only;

59

Guards are unresolvable when contained event references are unresolvable un-

less the guard can be resolved without evaluating the terms including those refer-

ences (i.e. short-circuit evaluation). For simplicity, we consider an unresolvable

guard to be FALSE.

An event template can become impossible (i.e. can never be executed) if a max-

imum time limit expires (subject to short-circuit evaluation) or a necessary pre-

decessor withdraws its offer of causality.

Implementations must take these properties into account, in particular, an imple-

mentation might need to maintain timers to manage guards involving time constraints.

Although absolute time is not used, the semantic model assumes a global clock for time

comparisons. In practice, this means that an implementation must take steps to ensure

time synchronization and take synchronization accuracy into account when evaluating

time constraints. No particular representation of time is mandated, except that a literal

value representation of time intervals and a function to return the time interval between

two time values must be supported.

4.6 Distributing the Execution

The execution model described in the preceding section does not offer any significant

enhancements in expressiveness over other programming and execution models based

on true concurrency, for example, Petri nets [99]. The unique feature of the model,

however, is that with some constraints, programs expressed in this manner can be

executed by a set of distributed state machines with no synchronization except that

explicitly required by the application-level relationships specified in the program. An

implementation of such a distributed state machine is described in chapter 6. While

it is possible to distribute the behaviour described by a Petri net, the partitioning of

behaviour must respect the synchronization constraints imposed by the Petri net model.

No such constraints are imposed by this model.

The execution of a program in the model described in the preceding sections in-

volves modifying and reasoning about an execution history. If we were to require all

participants in a distributed execution of the program to operate on a single, consis-

60

tent view of the history, program execution would be limited by the communication

required to synchronize the history each time an event is executed. Our goal is to

avoid this synchronization since it is impractical for Internet-scale applications that

must tolerate network failure and potentially high latencies in communication. We

must therefore allow participants to operate on a local and possibly incomplete view

of the execution history.

E7

E6

time

e1 e2

e3

E4

e1 e2

e4

E3

Site 1

Site 2

E5

E5

E7

E6

Figure 4.5: Distributed Execution State

Consider the example depicted in figure 4.5. In this example, Site is aware of

the execution of events e , e and e , while Site is aware of e , e , and e . The

template E is apparently enabled at Site because its only causal predecessor (e) is

known to have been executed. Similarly, template E is apparently enabled at Site . In

the following discussion, we define the necessary conditions for these templates to be

executed against an incomplete view of state.

We begin by examining the requirements for event execution specified in section

4.3. The first requirement was that a template have sufficient offers from events in the

history to satisfy its causal predecessor set. In other words, the local view of history

must contain a set of events that offer their causality to a template and satisfy its causal

predecessor set. While notification of remote events might be required, this notification

can be asychronous. Once such notifications have occurred, the rule can be correctly

61

evaluated against a local view of the history.

The second requirement is that the guard is satisfied, knowing the choice of prede-

cessors. This can be evaluated against a local view of the history provided that view

includes all events referenced by the guard. Similarly, references to causally preceding

events in the parameter relationship specification must be satisfied by the history. We

address this problem by adding a requirement that an event reference implies that the

event referenced is a mandatory member of the causal predecessor set for this event,

and that the event referenced must make an offer of causality to this event. Note that

the runtime system described subsequently in chapter 6 treats these offers somewhat

differently to explicit causality relationships because it maintains a more complete

causal history than strictly required.

The third requirement is that the execution of the template will not invalidate the

causal successor constraints of any offers that are used. This requirement is difficult

to ensure, since it implies that we must prevent concurrent acceptance of mutually

exclusive offers made by an event. For example, the program depicted in figure 4.4

allowed only one of e or e to succeed e , some form of distributed decision must

be made across the sites to choose the successor. There are a number of possible

solutions:

1. Force synchronization to choose one of the mutually exclusive potential succes-

sors when such conditions exist;

2. Nominate a single participant to deterministically choose a correct set of succes-

sors at run-time (autocratic choice);

3. Require that non-determinism can be locally resolved by mutually exclusive

guards or runtime checks on templates wherever conflicts exist; or

4. Allow optimistic execution and raise an exception when inconsistent behaviour

is detected.

This is the key difficulty in distributing a concurrent program, and the following

subsections discuss the possibilities in more detail. In summary, however, we con-

clude that the first and second options above require significant synchronization and

62

are thus excluded. The preferred solution is to require that non-determinism be locally

resolved (3), but programs that cannot satisfy this requirement can be executed using

the optimistic method. A program that permits local resolution of non-determinism is

called a safe program.

Note that the chosen approach moves the problem to the programming language

level, meaning that the application programmer or language tools can resolve the non-

determinism in a manner that is most efficient and appropriate for the application.

4.6.1 Synchronization

Synchronization can be used to allow choice of non-deterministic successors. The

choice could be implemented, for example, through a voting algorithm. While such

algorithms are refined and well-understood, a number of round-trip messages must be

exchanged by participants. In an unreliable, high-latency environment like the Internet,

this can impose a significant overhead so this solution is not considered feasible.

4.6.2 Autocratic Choice

Nominating a single participant to make an autocratic choice of the set of successors

is possible, but requires reliable communication to ensure that the chosen successors

are explicitly aware of the predecessor. It also requires complete knowledge of the

execution context of the chosen successors to ensure that any guards are satisfied and

thus avoid deadlock. In other words, the chooser must have knowledge of all prede-

cessor events for the chosen successors to ensure that their guards are satisfied. In the

worst case, these requirements mean that the chooser must have a complete view of

the history. Since our goal is to avoid the need for such a view, this solution is not

considered feasible.

4.6.3 Safe Programs

We use the adjective safe to describe programs where all non-determinism in offers

made by events can be locally resolved. The following conditions in a program can

resolve the non-determinism:

63

Conflicting successors of an event have mutually exclusive guards; or

Conflicting successors of an event execute locally, thus allowing the local state

machine to safely choose a single successor; or

Conflicting successors of an event have other mutually exclusive predecessors,

and any non-determinism across those predecessors can be locally resolved.

This problem is one of resolving distributed predicates using local knowledge.

A deeper analysis of distributed predicates and their resolution is given by Charron-

Bost et al in [25]. In our case, the key problem in ensuring that a program is safe

is that guards can refer to the parameter values of preceding events that are bound

at runtime, and hence mutual exclusion is difficult to recognize in a static parse of a

program. It is important, however, to reflect on the types of program constructs that

can lead to mutually exclusive offers. Such constraints are imposed by exclusive OR

relationships across successors, typically found in programs as if-then-else constructs

or case blocks. It is usual for these constructs to include or imply mutually exclusive

guards. In figure 4.4, for example, a choice between the execution of E and E

must therefore be protected by an if-then-else construct where the guard expression

can be resolved independently by both sites. In the general case, distributed exclusive

OR relationships without mutually exclusive guards imply non-deterministic language

semantics (i.e. the system must make a choice). No commonly-used programming

language has constructs that allow such non-determinism.

We conclude that while the model can describe behaviour that cannot safely be

distributed amongst asynchronous distributed state machines, it is unlikely that pro-

gramming languages would allow the expression of such behaviour. Languages that

can express such behaviour must either do so in a controlled manner or be consid-

ered unsafe. As discussed in the introductory comments, deferring the problem to the

language level in this manner is the preferred solution.

4.6.4 Optimistic Execution

As briefly described above, we can allow asynchronous execution by ignoring poten-

tially inconsistent behaviour and raising an exception if such behaviour is detected.

64

While this might seem computationally unsound, static analysis of programs can flag

potential non-determinism and give the programmer an opportunity to deal with it. In

particular:

the programmer can selectively remove non-determinism through guards or more

explicit programming;

the use of exceptions could allow programmer-specified recovery when incon-

sistent behaviour is detected, and this is often preferable to synchronization;

there are a number of situations where non-determinism will be resolved at run-

time through notifications of event execution. For example, where two succes-

sors have additional, co-located enabling events that are mutually exclusive.

The key advantage of an optimistic approach is that it gives control to the pro-

grammer so that possibly inconsistent behaviour can be selectively allowed if the pro-

grammer deems it benign or sufficiently unlikely. This is also a disadvantage, since

with control comes the need to understand the source of the non-determinism and the

potential problems of allowing inconsistent behaviour. A further disadvantage is the

fact that it will not always be possible to detect incorrect execution at run-time. Incon-

sistent behaviour can only be detected when knowledge of the execution of conflicting

events is available in one location. Given the truly concurrent nature of the execution,

this cannot be guaranteed.

In subsequent discussion of the semantic model, we assume that mutually exclu-

sive offers can be locally resolved, or in other words, only safe behaviour is possible.

It is expected that implementations of the semantic model will use the optimistic ap-

proach and rely on programming languages and tools to avoid unsafe behaviour. The

execution can therefore proceed entirely on a local view of execution history.

4.7 The Significance of Location

The model described above does not associate event templates with any particular site

or location. If a single event template can be executed at multiple locations, we must

either allow an offer to be accepted by multiple executions of a template, or explicitly

65

associate a template with a location. The semantics of allowing multiple acceptances

of an offer is neither intuitive nor easy to implement and can lead to unsafe behaviour

similar to that discussed in the previous section. We therefore require the program

execution to associate an explicit location with each template.

Assigning a single location to each template might sound highly restrictive, but in

practice, it reflects common programming models. Consider the following:

The association of a template with a location can and usually will happen at

program instantiation;

The concepts of role and interface introduced in chapter 2 give flexible co-

location constraints for event templates in a program definition. At program

instantiation time, a program role can be associated with each component inter-

face, and the set of templates in the role behaviour can be renamed or annotated

with the interface identifier to distinguish their location. Note that this method

also works when multiple interfaces implement the same role (e.g. for replica-

tion or process groups).

Through ensuring that templates identifiers include location, we can guarantee that

an enabled template can only be executed at one location and thus avoid additional

non-determinism.

4.8 Formal Specification

The preceding sections have described the Finesse semantic model informally, with the

key area of distributed control flow explored in some detail. The following sections

formalize this model using the Z specification language. The focus in these sections

is on control flow, since the parameter and guard semantics are defined in a rigorous

fashion in previous sections.

Z is used in a relatively simple and axiomatic fashion that should be accessible to

any reader with a basic understanding of logic and discrete mathematics. Z was chosen

for two reasons: firstly because axiomatic Z specifications have no underlying execu-

tion semantics and we thus avoid any implications of such semantics; and secondly

66

because of familiarity with the language on the part of the author. To assist in read-

ing the specification, this section presents a brief introduction to the Z specification

language. Further detail can be found in [121].

4.9 Introducing Z

Z is a set-based specification language, with the majority of its operators and constructs

used to describe sets and relations. Types in Z are sets and are typically defined either

as base types or schemas. A base type defines a set of raw elements with no defined

subordinate structure, and is named by convention with an upper case word and intro-

duced by placing it in square braces, for example MYTYPE . Schemas define types of

entities that have multiple parts, use capitalized words as names, and are introduced

using the following notation:

MySchema
name NAME
age

m m MySchema m name m name m m

In other words, the type MySchema has two attributes: name from the set NAME

and age, a natural number (indicated by the predefined type). The portion below

the line splitting the box constrains or defines the members of the set, and in this case

specifies that members of the set MySchema are uniquely named. LHS RHS in the

constraint can be read as “if LHS then RHS”. Another similar and often used logical

operator is LHS RHS which can be read as “LHS if and only if RHS”.

Z also makes extensive use of binary relations. The type of a relation between the

sets X and Y is specified as X Y and means the set of all possible pairings of elements

from the sets X and Y . The elements of the set X are known as the domain of the

relation, specified as domR, and the elements of Y are known as the range and specified

as ranR. Infix notation can be used to specify membership of a relation, for example,

xR y says that the pair x y is in the relation R. Z also provides domain and range

restriction operators to extract subsets from a relation. x x xn R specifies

the set of pairs from the relation R whose domain element is in the set x x xn .

67

Range restriction is similar, for example R x x xn restricts R to the set of

pairs whose range element is in x x xn .

A commonly used restricted relation is a function, specified as X Y , which is

a relation where each element of the set X is paired with exactly one element of the

set Y . Z also defines a partial function X Y , where the function is only defined for

some subset of X (i.e. the function domain is a subset of X).

Z supports the definition of axioms. In the specification of the semantic model,

axioms are typically used to define functions or relations with constraints, for example:

Identity X X

x x Identity x x

This defines an identity function over the type X. The upper portion defines the

name and type of the axiom, with the lower portion defining the constraints. Note that

the operator is used to define pairings of elements in a relation.

Z defines a number of common types. The set of natural numbers is denoted

and the set of real numbers (not formally part of Z but commonly used) is denoted

. Z also defines sequences of arbitrary types, denoted seqX. Formally, this defines a

relation between natural numbers and the elements of the set X, that is, x

x n xn where x x x X. The head, tail and last operators are also

defined for sequences.

A final important aspect of type specification in Z is the powerset, denoted SOMETYPE.

This defines the set of all possible subsets of the set SOMETYPE. When an attribute

is given the type SOMETYPE, this says that the attribute is a set of elements from

SOMETYPE (i.e. a subset of SOMETYPE). The usual mathematical symbols for set

and logical composition operations are used in Z.

4.10 Basic Behaviour Description

Causal dependencies between events form the basis of the semantic model, thus we

first define a model for execution of events in a program based purely on these causal

dependencies. As previously described, a behaviour is a directed, acyclic graph of

68

events. The execution of a program must therefore result in such a graph. We base

the execution semantics on the notion of an initially empty history, which defines a

graph of events that have occurred, a set of event templates that define possible future

events and their relationships, and a transition function that relates a history and set of

templates to a new history containing one or more additional events. A program spec-

ification is thus a set of event templates, and an execution “unrolls” that specification

to generate a behaviour. Note that iterative behaviour is captured by allowing multiple

executions of a template, thus a program need not contain distinct templates for every

possible event. The formal execution model will define the notions of event, event

graph (i.e. history), event template, the transition function, and correct execution.

4.10.1 Base Types

We first introduce the types EVENT , TEMPLATE , GUARD and PARAMREL .

These can be interpreted as sets of identifiers for schemas that define the attributes of

events, event templates, guards and parameter relationships respectively. We use this

approach both to defer specification of some entities, and because Z does not allow

recursive schemas thus requiring reference types. Note that Z is case sensitive, so we

use the same name to refer to the related schema types, but with only the first letter

capitalized.

Events have parameters, but for the purposes of the semantic model, the structure

of such parameters is unimportant and it is sufficient to simply assert the existence of

a set of parameter values VALUE , and a set of names NAME used to distinguish the

parameters of an event.

Time semantics in Finesse are relative, that is, it is not necessary to support abso-

lute time. We therefore represent time values as real numbers indicating a number of

seconds since an agreed reference point in time. For readability, we define the alias

TIME . Note that we do not distinguish time by location, or in other words, we

assume the existence of clock synchronization across physical locations. In an imple-

mentation it will be necessary to consider clock skew when evaluating time semantics.

Where absolute time is necessary, applications must introduce an explicit clock.

The application structure in the Finesse language are not part of the semantic

69

model, however, we assert that all modelled behaviour occurs at the interfaces of com-

ponents and we capture the notion of location by introducing a type LOCATION .

4.10.2 Events and Event Templates

An Event is an immutable entity with a set of parameters, a time, and an event template

from which it was executed:

Event
event EVENT
params NAME VALUE
time TIME
template TEMPLATE

e Event
er EVENT e event er

The schema condition asserts that eachEvent is uniquely associated with an EVENT ,

or in other words, unique reference semantics. Although this condition ensures the ref-

erence semantics, we define a function to map between EVENT references and Events

to assist in further specification:

EventRef EVENT Event

e Event
er EVENT er e EventRef

Event templates capture the necessary properties of events executed from the tem-

plate and the information required to establish relationships between events. A set of

templates thus defines a program. There can be considerable non-determinism in the

relationships specified in a program, typically introduced by logical OR and exclusive

OR constructs. Rather than attempt to directly represent the decision trees resulting

from such non-determinism, we represent the non-determinism through sets of sets

(denoted X). Each component set represents one possible resolution of the non-

determinism. This approach has two key advantages: it simplifies the specification

through abstraction, and avoids any suggestion of how such non-determinism should

be represented in a programming language.

70

An event template is thus defined by:

Template
template TEMPLATE
guards GUARD
requires TEMPLATE
offers TEMPLATE
params NAME PARAMREL

t Template
tr TEMPLATE t template tr

The guards are a set of possible combinations of simple guard expressions that, if

true, make the whole guard expression true. The requires attribute defines the possible

combinations of causally preceding events that make this event template executable,

and the offers attribute defines the possible combinations of causally succeeding events

that an event from this template can enable. The significance of these was discussed

previously in sections 4.1 and 4.2. The params attribute introduces a partial function

mapping the set of parameter names to specifications of relationships with other event

parameters and environment supplied values. We do not describe these relationships

any further because they are captured appropriately in section 4.4. Note that time and

location constraints are specified in guards, hence these event attributes are not directly

referenced.

Similar to the Event specification, we define a function to map template references

to schema instances:

TempRef TEMPLATE Template

t Template
tr TEMPLATE tr t TempRef

4.10.3 Causality Graphs

The behaviour graph representing the history is a relation across a set of events, with

each element of the relation an explicit (i.e. required) causal relationship between the

paired events. Note that by definition, causality is transitive, but our execution seman-

tics requires a direct representation of the graph and the transitivity can be implied

71

from the graph. The type of an event graph is thus:

Graph
events Event
causes Event Event

dom causes ran causes events

A separate events set is necessary to allow for events that have no causal rela-

tionships (i.e. not connected to any other events by the graph). To assist in further

constraining the graph semantics, we define the notion of paths through the graph. A

path is defined as a sequence of two or more events connected directly or transitively

by the graph relation.

paths Graph seqEvent

g Graph path seqEvent
path paths g

path head path last path g causes
path tail path paths

head path head tail path g

Causality is also irreflexive, so the graph cannot contain cycles. Given our defini-

tion of paths, we thus complete the definition by adding an acyclic restriction to the

basic Graph.

CausalGraph g Graph p paths g head p last p

4.10.4 Guards and Time Semantics

Guards on a template must be evaluated in the context of a set of events offering their

causality to the template and a time of occurrence. We therefore define a function to

represent this guard semantics:

satisfied GUARD Event TIME

At this level, we do not need to reason about the actual guard semantics, just note

that it is possible to evaluate a guard in the context of these events at the given time.

72

4.10.5 Correct Execution

We first define the notion of a program:

Program
templates TEMPLATE
roots TEMPLATE

roots templates

The templates define the possible events of a program execution and their relation-

ships. The roots define a set of possible execution graph roots. A program execution

is defined by a causality graph representing its history and a program from which it

was executed. We make the set of templates in the program an explicit attribute of the

schema to simplify subsequent specifications.

Execution
history CausalGraph
program Program
templates TEMPLATE

templates program templates
e history events e template templates

A correct execution is one where all events in the history satisfy the requires and

offers and guards attributes associated with their respective templates, and the set of

graph roots matches one of the sets specified by program roots. The roots attribute of

a program allows us to prohibit an empty history except where explicitly allowed by a

program.

To help us in specification of these constraints, a number of supporting definitions

are useful. First an enables relation defines if a set of events provides the necessary

causality to satisfy the requires attribute of a potential successor event, and that the

successor event guard is satisfied by this set of predecessors. Note that we include

the constraint that the time of the new event must be greater than any of its enabling

predecessors.

73

enables Event Event

eset Event e Event eset enables e
t Template e eset t TempRef e template

TempRef e template requires
e eset e time e time
e e eset e template e template
gset e template guards

g gset satisfied g eset e time

It is useful to define a stable execution state, that is, one which is incomplete, but

does not violate any template constraints. A stable execution state is therefore one

that is consistent with the program semantics specified by the template definitions. To

support this, we specify an allows relation, which defines when an event in the history

of an execution allows a subsequent event to use its causality.

allows Event CausalGraph Event

e enew Event g CausalGraph e g allows enew
tset Template

tset t Template e ran g causes e
TempRef e template t

TempRef enew template tset
offer TempRef e template offers

tset TempRef enew template offer

This specifies that only a single event from a specific template can use an offer

(since iteration allows multiple executions of a template), and that accepting the of-

fer does not invalidate the offers constraint associated with template of the preceding

event. The existentially quantified tset attribute represents the set of offers taken by

other successor events in the graph.

A stable execution is thus defined as follows:

StableExecution
ex Execution e ex history events

dom ex history causes e enables e
e dom ex history causes e e ex history allows e

In other words, a stable execution is one in which all events in the execution are

correctly enabled, and in which the set of accepted offers associated with each event

74

does not violate the offers attribute of their template.

To define a correct execution, we need to define termination semantics. The terminates

relation is similar to allows, except that it defines if a set of events actually satisfies the

offers attributes of an event’s template:

terminates Event Event

eset Event e Event eset terminates e
t Template e eset t TempRef e template

TempRef e template offers

The set of correct executions is thus defined as follows:

CorrectExecution
ex StableExecution

e ex history events ran e ex history causes terminates e
t Template e ex history events ran ex history causes

TempRef e template t ex program roots

In other words, the set of correct executions are the stable executions where all

events in the history are also correctly terminated, and the where roots of the history

graph satisfy the program roots specification. Note that this does not guarantee that a

program will terminate, just that if it does terminate in a state that satisfies the axiom,

then the execution is correct. A non-terminating program can thus never have a correct

execution, but can have a stable execution.

4.10.6 Transition Semantics

We define a transition relation over executions that specifies the valid transitions that

can occur in program execution. Informally, a transition represents the addition of a

set of events and arcs to a graph to yield a new graph. Executing transitions that satisfy

this relation ensures that each step of the execution is a StableExecution, or in other

words, it satisfies the program semantics encoded in the template definitions.

We begin by specifying a graph transition relation:

75

GraphTransition CausalGraph CausalGraph

g g Graph g g GraphTransition
g events g events
eset Events eset g events g events

e e g causes g causes e eset e eset
e e eset e template e template
e eset preds g events preds g causes e

preds enables e
e preds e g allows e

This states that the transition can only add relations (arcs) to the graph and all arcs

added must be from old events to new events. This guarantees that each transition

makes progress, and that extant causal relationships between events (or lack thereof)

are immutable. The subsequent predicates specify that only one event from a given

template may be executed in a single transition, that each new event must be enabled

by the events that immediately precede them in the new graph, and that the new graph

must allow each new event to accept causality from those predecessors.

The existentially quantified eset attribute defines the set of events added to the

graph. This use of a set of events models true concurrency, where multiple events can

execute independently and concurrently. We do not constrain the execution time of

these events, meaning that the events can be logically concurrent and hence executed

at any time, noting that we do not allow causal relationships within the set.

The restriction preventing multiple events from the same template executing con-

currently allows us to specify successors using template names, and also simplifies the

definition of programming language semantics, as will be seen in subsequent chapters

of the thesis.

A transition from one Execution to another in a program is thus defined as follows:

Transition Execution Execution

ex ex Execution ex ex Transition
ex program ex program
ex history ex history GraphTransition

We propose that any valid Transition from a StableExecution leads to another

StableExecution.

76

Proof: given the definition of StableExecution in section 4.10.5 the proposition

can only fail if:

1. there exists an event e in the range of the causes relation that is not correctly

enabled; or

2. there exists an event e in the range of the causes relation for which the set of

enabling events does not allow e.

If we begin with a stable execution, the first condition is impossible due to the

preds enables e constraint on all events added by a GraphTransition. Similarly, the

second condition is made impossible by the e g allows e constraint.

It is not possible to guarantee termination of all programs, thus a CorrectExecution

cannot be guaranteed. The execution of a sequence of valid Transition as defined by

the axiom above, however, ensures that the program is being executed in a manner

consistent with the program specification. If finite termination is always possible for a

given program, then continued execution of valid Transitions will eventually lead to a

CorrectExecution.

4.11 Formalising Distribution

The preceding sections have formalized the execution of programs based on the Fi-

nesse behavioural model. Our informal description of the distribution semantics de-

scribes the conditions under which the execution of a program can be distributed across

a set of participants. This section formalizes the distribution of this execution, showing

that subject to some program constraints, distributed participants can correctly execute

locally enabled Transitions against a partial view of the execution history.

The fundamental aspect of the distributed semantics is the notion of location. Each

state machine participating in the distributed execution of a program has a unique lo-

cation and maintains a view of the execution history. The execution history of each

machine is populated with all locally executed events and any remote events about

which it has been notified through direct or indirect communication. As previously

specified, a valid transition involves the addition (execution) of a set of events to the

77

history graph. A valid transition must also ensure that the relevant allows and offers

relationships are satisfied, and that only a single event from any template is involved

in a transition. If we show that the execution of a causally unrelated (logically concur-

rent) remote event cannot invalidate the execution of a locally enabled event, then the

local event can be executed regardless of any concurrent remote behaviour. Note here

that “concurrent” means all behaviour that occurs at each remote location before the

next event notification from that remote location. The following subsections formally

capture this approach.

4.11.1 Templates and Locations

We first define a distributed program as one that associates the templates of a program

with specific locations:

DistProgram
program Program
roles Template LOCATION

program templates dom roles

A distributed execution that has a set of executions of the program (participants),

each bound to a location, and constrains all program templates to that same set of

locations:

DistExecution
participants Execution
dprogram DistProgram
interfaces Execution LOCATION

participants dom interfaces
ran interfaces ran dprogram roles
p participants p program dprogram program

The binding of templates to locations allows the participating executions to assert

that an event associated with a template cannot be executed concurrently in another

locations, thus preventing any attempts to execute multiple events from the same tem-

plate in a single transition. The binding of template to location can be performed at

78

program initialization, although for tractability it would be usual for the co-location of

events to be statically defined. This co-location of events is typically associated with

the notion of an interface. Note that it is also possible for a set of participants to exhibit

similar behaviour by copying and renaming a set of templates and distinguishing their

location at initialization time or even at run time based on a statically defined set of

locations for a nominated behaviour. This corresponds nicely to the notion of a shared

role or process group in a distributed computation.

4.11.2 Initialization

The key requirement for distributed execution is that all participants start from the

same state:

InitialState d DistExecution p d participants p history

4.11.3 Distributed State

We now need a definition for the state of a distributed execution. This is defined as

the execution of the shared program with the history defined as the union of the local

execution histories. We first define the merge of a set of CausalGraph structures:

GraphMerge CausalGraph CausalGraph

gset CausalGraph g CausalGraph GraphMerge gset g
g events eset Event g gset eset g events
g causes erel Event Event g gset erel g causes

Using this definition, we define the distributed state:

DistState DistExecution Execution

d DistExecution ex Execution DistState d ex
ex history GraphMerge

g CausalGraph ex d participants ex history g

The distributed state axiom captures the notion that the state of a distributed execution

is the execution state formed by the merge of the local states in the execution.

79

4.11.4 Distributed Transitions

We define a distributed transition function as a set of local transitions with the execu-

tion of any template restricted to the participant with the same location as that template.

Formally:

DistTransition DistExecution DistExecution

d d DistExecution d d DistTransition
d dprogram d dprogram
ex l d interfaces ex l d interfaces

l l ex ex Transition
p d participants p d participants

p p
d locations p d locations p

p p Transition
e p history events p history event

d dprogram roles e template d interfaces p

Note that the specification includes the constraint that at least one local transition must

have occurred, thus ensuring progress is made.

To show the validity of a distributed execution, we must show that if we start from

a DistState that satisfies the StableExecution axiom, a valid DistTransition results in a

DistState that also satisfies StableExecution. This can be proven if we show that any

local Transition of a participant Execution is also a valid Transition of the distributed

execution state. Reiterating the argument given in section 4.10.6, the proposition can

only fail if, after a local transition:

1. there exists an event e in the range of the causes relation of the DistState that is

not correctly enabled; or

2. there exists an event e in the range of the causes relation of the DistState for

which the set of enabling events does not allow e.

The first condition is a constraint over the set of enabling arcs for the event e in

the distributed state. The location constraint on template execution in DistTransition

ensures that only one participant will add e to its history, hence only that participant

will add enabling arcs for e to the graph. Thus, if the local execution correctly satisfies

80

the eset enables e constraint of a Transition, the constraint will be satisfied in the

distributed state since the eset associated with e cannot be modified by the merge of

participant histories.

The second condition cannot be satisfied in the same manner: it is quite possible

that distinct events at different participants will use an offer from a single enabling

event and this could violate the allows condition on the enabling event in the distributed

state, but does not necessarily violate the allows condition on the local state.

A distributed program has an allows conflict if any two sets of possible offers

a template can make have mutually exclusive members that are not co-located. As

discussed in the informal description of this problem in section 4.6, we address this

issue by defining the set of safe programs as those that do not have this conflict, or

have guards to ensure that such conflicts can never occur in a distributed execution.

More formally:

SafeProgram DistProgram

p DistProgram p SafeProgram
d DistExecution d dprogram p

DistState d StableExecution
e DistState d history events

tset tset e offers t t Template
p roles t p roles t
t tset t tset
t tset t tset
eset eset DistState d history events e e Event
e template t e template t
e eset e eset
eset enables e eset enables e

This specification is somewhat complex, but essentially says that if a conflict ex-

ists in an execution of a program because of mutually exclusive offers from an event

e, then there cannot be sets of enabling events in the execution state including e that

enable those mutually exclusive events. Based on the definition of the enables relation

in section 4.10.5 this implies that either the guards on those events cannot be satis-

fied by that set of enabling events or the offer cannot be in the requires set of one of

the events. In general, we expect that the safety of programs will be guaranteed by

ensuring mutually exclusive events have similarly exclusive guard conditions.

81

Returning to the discussion of the satisfaction of our allows constraint, we can

guarantee this constraint if the distributed program is a SafeProgram, and thus, any

valid local transition in a distributed execution will result in a StableExecution state.

From this we assert that anyDistTransition against aDistExecution in a StableExcution

state will result in another StableExecution state.

4.11.5 History Updates

One of the issues not addressed in the above discussion is the updating of local ex-

ecution histories to reflect remote events in the distributed execution state. Without

this, remote events will never be visible in local histories and hence local events with

dependencies on those remote events cannot be executed. We define history updates

formally as follows:

HistoryUpdate DistExecution DistExecution

d d DistExecution d d HistoryUpdate
DistState d DistState d
d dprogram d dprogram
p d participants p d participants

d locations p d locations p
p history events p history events
p history causes p history causes

p d participants p d participants
d locations p d locations p
p history events p history events

A key aspect of this specification are that the distributed state is unchanged: only

the local execution histories are updated with events from remote participants. This

means that theHistoryUpdate transition cannot influence the StableExecution property

of a distributed execution. We also require that at least one history is updated in the

transition.

4.11.6 Properties of Transitions

The DistTransition and HistoryUpdate transitions define the possible state changes in

the execution of a distributed program and guarantee that, given an initially empty

execution history and a safe program, all reachable states are StableExecution states.

82

There are some key properties of this specification that are worth noting:

1. The transition semantics does not require that each local execution is a StableExecution,

thus local histories can be sparse views of the distributed state provided all tran-

sitions satisfy the DistTransition and HistoryUpdate specifications.

2. The DistTransition and HistoryUpdate are, by definition, mutually exclusive be-

cause the former explicitly modifies the DistState and the other explicitly does

not modify DistState. Thus, for any distributed execution there must be a logi-

cally serialized set of DistTransition and HistoryUpdate transitions.

3. Despite the need for logical serialization, the DistTransition and HistoryUpdate

are both specified as independent transitions across a set of local executions.

This very nicely captures the logical concurrency of the system: providing there

are no intervening HistoryUpdate transitions, any set of transitions from each

participant individually satisfying the DistTransition specification can be com-

bined into a single, logically concurrent, transition. Similarly for localHistoryUpdate

transitions.

We have now formally defined the Finesse execution semantics, first for a cen-

tralized execution and then for a distributed execution. This specification captures the

necessary properties of such executions and their programs.

4.12 Concluding Remarks

The informal and formal descriptions presented in this chapter define a distributed,

asynchronous execution model for parallel programs. As discussed in the introduc-

tion to this chapter, there is no other equivalent, executable model in widely published

literature, so this result is quite significant in itself. Petri nets can provide a simi-

lar semantics but impose additional synchronization requirements and provide a less

approachable programming model.

Subsequent chapters use this model in the context of the binding, role and interface

architectural concepts introduced in chapter 2, but this execution model stands alone

and can be used in many parallel or distributed programming contexts.

83

4.13 Acknowledgments

Some of the work set out in the chapter is derived in from ideas proposed by this

author but developed and refined in collaboration with Andry Rakotonirainy, Stephen

Crawley and Zoran Milosevic. I would like to express my sincere thanks to them for

their efforts. This early work was published in a paper presented at HICSS’97[103]

and subsequently republished in the British Computer Journal[102].

I would also like to thank Colin Fidge for his insights and feedback in developing

this aspect of the work, and a thank you to Anthony MacDonald for his assistance in

reviewing the Z specification.

84

Chapter 5

Language

5.1 Introduction

The preceding chapter provided a semantic model for the execution of asynchronous

distributed programs. This chapter1 describes the Finesse language, which can use

the semantic model as the basis for execution. The Finesse language, while not the

only possible application of this model, provided the impetus for development of the

semantic model and is an example of how the semantic model can be presented in a

useful language.

The Finesse language is perhaps best described as a coordination language and a

description of the language has previously been published in that research sphere[9].

The syntax and structuring concepts of the language, however, have grown from the

needs of open distributed processing and in particular, the A1 model[11]. The lan-

guage is intended to describe the behaviour and coordination of autonomous software

components in an open, distributed environment. As such, it bears only a minimal

resemblance to existing programming language syntax, including interface definition

languages like CORBA IDL.

While Finesse provides similar structuring and high-level functionality to other

coordination languages, it also differs in many ways. In particular:

1. Finesse abstracts over communication, allowing transformation of data and com-

1This chapter is derived from a paper presented at the Symposium of Applied Computing in February
1998[9]

85

piler or run-time optimization of message passing between components.

2. Finesse includes a representation of time, allowing the specification of quality

of service properties;

3. Finesse is independent of the language used for programming the distributed

components. It is similar in concept to CORBA IDL, for example, where the

program is compiled to produce interface stubs for components in the chosen

language(s);

In this chapter, we present the syntax of Finesse and describe the relationship of

the syntactic constructs to the semantic model described in the preceding chapter. We

build on the language overview of chapter 2 and the semantic model, so a basic un-

derstanding of the concepts presented in those chapters is assumed. In particular, we

assume that the key concepts of binding, role, interface and event relationships are

understood. A BNF specification of the language syntax is given in appendix A.

5.2 Basic Syntax and Structure

5.2.1 Structure of a Finesse Program

A Finesse program, also called a binding has an outer scope introduced by the keyword

Binding and the name of the binding. This outer scope defines the program boundary:

all behaviour present in the binding must be described in this scope. A set of Import

statements may appear at the beginning of this scope. An Import statement identifies

another binding program whose role and interaction definitions may be referenced and

re-used in this binding.

This opening is followed by two sections defining roles and interactions. The

Roles section defines the required behaviour of participating components, and the In-

teractions section defines the relationship between events at different roles. Braces

(...) are used to delimit the scope of definitions. Note that in the following ex-

amples, ellipses (...) are used to avoid including unnecessary detail and are not a

syntactic construct. The basic structure is thus:

86

Binding Example {
Import ...;
Roles {

...
}
Interactions {

...
}

}

5.2.2 Describing Roles

A binding has one or more role definitions, introduced by a role name. A role defini-

tion can be prefixed with a cardinality constraint enclosed in square braces [], which

constrains the number of components that can fill a role in single a binding instance

(program execution). The place-holder # represents the actual cardinality. Where no

cardinality constraint is given, the default cardinality is exactly one, for example:

Roles {
Client { ... }
[#>=1] Server { ... }

}

This specifies that there are two roles, Client and Server and that there is exactly one

Client and at least one Server in the binding.

Behaviour described within a role takes the form of event relationship specifica-

tions. In terms of the semantic model, these specifications take the form of event

template definitions connected by a number of relationship operators and modifiers.

These operators and modifiers are discussed further in subsequent sections. Events

executed from the event templates within a role specification are required to be co-

located. Where multiple interfaces can fulfill the role, each interface executes the de-

scribed behaviour independently (i.e. a logical AND of the behaviours) except where

linked by specifications in the Interactions section.

5.2.3 Describing Interactions

The Interactions specification defines relationships between event templates occur-

ring in the roles. In this section, event templates are referred to by the role name,

87

followed by a period ’.’ and the event template name. This reference to an event

template can also have a cardinality constraint to deal with situations where multiple

components fill the role. For example:

Binding Example {
Import ...;
Roles {

Client { send! }
[#>=1] Server { receive? }

}
Interactions {

Client.send -> [#=all] Server.receive
}

}

The place-holder # in the Interactions specification refers to the number of compo-

nents executing the event template, while the place-holder all refers to the number

of components filling the role. In the above example, the client role executes a send

event followed by all servers executing the receive event. In other words, this

binding is a high-level description of reliable multicast. Behaviour described in the in-

teractions section cannot introduce new event templates: it can only use event template

names defined in the roles section.

5.2.4 Event Templates

The behaviour within roles and interactions is defined by event templates and their re-

lationships. An event template is introduced in the roles section by a name, a direction

indicator, and a parameter list, for example:

e!(x:t1, y:t2)

where e is the event template name, ! indicates that it is an output event, x,y are

the event parameters, and t1,t2 are the data types of the parameters. Events are

uni-directional, that is, they can be input events or output events but not both. The ?

character is used in place of the ! to indicate an input event. Input and output are

relative to the role, that is, an output event implies that the component filling the role

is providing parameter values, while an input event implies that program execution is

88

providing parameter values. In terms of the semantic model, the direction indicator

is unnecessary because all events imply synchronization between the interface imple-

menting a role and the program execution. Direction indicators are included in the

language, however, because there is typically a clear distinction between input events

and output events in component implementations, for example, the input and output

associated with a method call.

The direction indicator and parameter list are only included in the first definition

of an event template. This means they may only appear in role definitions. Where a

template name appears more than once in a role definition, only the first can include

these annotations.

5.2.5 Named Behaviours

Roles can contain named behaviours that group together a set of event templates and

allow the Interactions section to refer to some subset of the role when defining inter-

action behaviour, for example:

Binding {
Roles {

Client {
read { send! -> receive? } ->
write { send! -> receive? }

}
...

}
Interactions {

Client.read ...
}

}

Named behaviours define a scope for event template names, allowing the role def-

initions to re-use template names in a different named behaviour when appropriate.

Reference to such event templates in the interactions section must include the role and

any scope names, e.g. using the example above Client.read.send.

89

5.3 Describing Behaviour

The constructs of the preceding subsections have hinted at how behaviour is described

in Finesse but are primarily aimed at describing program structure and event attributes.

In this section, we describe how the operators and modifiers of Finesse allow us to

describe event relationships in terms of the semantic model presented in 4.

5.3.1 Introducing the Causality Operator

Causality between event templates is introduced using the operator. The statement

e1 e2 has implications for both the left hand and right hand templates. In terms

of the execution semantics:

e e
e e requires
e e offers

In other words, the statement implies that the template e2 requires an offer from an

e1 event before it can be executed, and that an e1 event offers its causality to an e2

template. This defines the causality operator in its simplest form where there is no

non-determinism and the templates e1 and e2 refer to single occurrences of events

(cardinality of exactly one).

Instances of such causal relationship specifications can be chained, that is, e1

e2 e3without any change to the semantics. Considerably more complex expres-

sions can be used on either side of the operator, however. In subsequent discussion,

we will refer to the LHS and RHS meaning the expression to the left and to the right of

the operator respectively.

5.3.2 Complex Expressions

Expressions on either side of the causality operator can refer to a graph of events, for

example, as a result of using named behaviours. In other words, the LHS of the

operator could be the graph:

90

-> e2
/

e1
\
-> e3

In this case, the operator applies to each leaf template of the graph, that is, e2 and

e3 in this case. Similarly, if the RHS of the operator is a graph with multiple root

templates, the operator applies to each roots. Where there are multiple roots and leaves,

the operator applies to the product of leaves and roots (i.e. each possible pairing), for

example, if we use the above graph as our LHS and our RHS were:

e4
\
-> e6

/
e5

We have:

LHS RHS
e e
e e
e e
e e

5.3.3 Logical AND

The logical AND of two behaviours, LHS AND RHS, implies that both behaviours

must occur for correct execution of the program. Where there are no common, fully-

qualified template names in the LHS and RHS behaviours, the two behaviours are in-

dependent: there are no causal relationships and they can execute concurrently. Where

any template names match, the LHS and RHS must synchronize on the matching event

templates, or in other words, common event templates join the two behaviours. For ex-

ample:

e1 -> e2 -> e3

AND

e1’ -> e2 -> e3’

91

implies:

e1 -> e3
\ /

-> e2 -
/ \

e1’ -> e3’

In terms of the offers and requires, it implies:

e e e requires
e e offers
e e offers
e e requires
e e requires
e e e offers

5.3.4 Logical OR

The logical OR of two behaviours LHS OR RHS, implies that either or both be-

haviours can occur. As with AND, the behaviours must synchronize on common event

template names, that is:

e1 -> e2 -> e3

OR

e1’ -> e2 -> e3’

implies:

e1 -> e3
\ /
OR-> e2 -OR

/ \
e1’ -> e3’

In terms of offers and requires:

e OR e e requires
e e offers
e e offers
e e requires
e e requires
e OR e e offers

92

It becomes clear from this example that the requires and offers associated with an

event template are decision trees, as described in the execution semantics. Any level

of nesting of such logical expressions is possible.

5.3.5 Exclusive OR

The exclusive OR of two behaviours LHS XOR RHS, implies that one or other of the

two behaviours must occur but not both. Since the behaviours are mutually exclusive,

no synchronization is possible or necessary. Using our same example:

e1 -> e2 -> e3

XOR

e1’ -> e2 -> e3’

implies:

e XOR e e requires
e e offers
e e offers
e e requires
e e requires
e XOR e e offers

The XOR operator can also be used to capture optional behaviour, that is:

e e XOR e
e e requires
e XOR e offers

e e XOR e
e XOR e requires
e e offers

5.3.6 Combining Logical Operators and Complex Expressions

In the preceding subsections we have described logical operators and complex expres-

sions in isolation. From the discussion, it is clear that the non-determinism in prede-

cessor and successor event templates caused by logical OR and XOR operators must

be captured in the requires and offers of an event template. In the presence of complex

93

expressions, it follows that any non-determinism involving leaf nodes of a LHS must

be captured in the requires of the RHS root nodes and any non-determinism involving

the RHS root nodes must be captured in the offers of the LHS leaf nodes. For example,

if we have:

-> e2
/

LHS == e1 XOR
\
-> e3

e4
\

RHS == OR -> e6
/

e5

We get:

LHS RHS
e XOR e e requires
e XOR e e requires
e OR e e offers
e OR e e offers

The notion of the leaf or root node is essentially replaced with the notion of a leaf or

root expression whenever there is non-determinism introduced by OR or XOR across

nodes.

5.3.7 The Logic of Cardinality Constraints

Cardinality constraints specified in interaction specifications imply a “subset choice”

semantics: a correct behaviour executes a subset of the possible events where the sub-

set satisfies the specified cardinality constraint. Such specifications take the form:

R1.e1 -> [# > n] R2.e2

where refers to the number of component interfaces in role R that actually execute

e , is a numeric comparison operator (i.e. it could be a , etc), and n is a numeric

94

value. The cardinality constraint imposes a logical relation over the distinct templates

that could be executed at each of the interfaces filling the roles.

The effect of the cardinality constraint is equivalent to a logical XOR of all possible

subsets that satisfy the cardinality constraint. For example, if we have three interfaces

I , I and I in role R and the cardinality constraint is , we have:

I e AND I e XOR I e AND I e XOR I e AND I e

This can be considered a rewriting rule over the original expression, thus the expression

becomes:

R1.e1 -> I1.e2 R1.e1 -> I2.e2 R1.e1 -> I1.e2

AND XOR AND XOR AND

R1.e1 -> I2.e2 R1.e1 -> I3.e2 R1.e1 -> I3.e2

The semantics of these logical operators specified in the preceding sections can then be

applied. The usual mathematical reduction and/or simplification of logical expressions

involving AND, OR and XOR can be applied. Note here that event templates specified

in role and interaction definitions must be annotated with an interface identifier at

binding instantiation to distinguish them in the program execution graph, as discussed

in section 4.7 of the previous chapter.

The implications of cardinality constraints for non-determinism are significant and

it is worth noting that this example and others can potentially cause problems for im-

plementation. By definition, the behaviour associated with a set of interfaces imple-

menting roles is distributed. Cardinality constraints applied to a role can therefore

result in distributed, mutually exclusive successors to an event. Such mutual exclusion

occurs whenever a maximum cardinality less than the number of interfaces filling a

role is specified on the RHS of the causality operator. Consider the example above:

a distributed decision must be made to exclude either I e , I e or I e to ensure

that the constraint is satisfied. This problem is discussed at some length in section 4.6

of the preceding chapter. The recommended solution is to require that event template

guard on any RHS expression guarantees the necessary mutual exclusion.

The Finesse language specification does not implement this recommendation through

95

its syntax, however, compilers should flag any program construct that could potentially

lead to such problems. In the case of cardinality constraints, there are also builtin

boolean functions (discussed in subsequent sections) that can be used to guard such

behaviour.

5.4 Control Flow

The preceding section provided a basis for describing event relationships using a num-

ber of operators. In this section, we introduce control flow constructs, and in particular,

constructs for guards and iteration.

5.4.1 Roles, Interactions and Iteration

We know intrinsically that iterative behaviour must be implemented by the components

participating in a distributed program. Connecting the iterative behaviour of distinct

components in a well-defined and clear specification is difficult at best. In Finesse, we

try to minimize this complexity by allowing iteration constructs only in role specifica-

tions: the interactions section of a specification can thus only be used to “connect” the

iterative behaviours and not introduce any new iteration. This is in keeping with the

goal of being a language aimed at connecting components. As can be seen from the

previous and subsequent example programs, this keeps the interaction specifications

relatively simple, and loses little or no expressive power.

Revisiting the semantics of the operator, we add the assertion that in the in-

teractions specification, the expression LHS RHS implies that any instance of

the LHS behaviour is followed by a distinct instance of the RHS behaviour, subject to

any non-determinism introduced by logical operators. This means that the relationship

applies distinctly to any iterated instances of the LHS and RHS behaviours.

In the Finesse language, we do not allow parallel iteration within a role. This

avoids the inherent problem of connecting related parallel behaviours across roles, but

prevents a role from creating independent threads. Parallel instances of a behaviour

can be introduced by allowing multiple instances of a role: this explicitly identifies

each instance and the connections between these behaviours and others. It can also be

96

introduced by using explicitly and statically named copies of an imported behaviour.

While it would be possible to extend the semantic model and language to include par-

allel iteration within a role, many programs can be expressed without such iteration as

is demonstrated in chapter 8. Future versions of the language might allow the dynamic

creation of subordinate bindings to address this problem and avoid the issues related

to connecting parallel behaviours across roles.

5.4.2 Iteration

Iteration is introduced by a while construct:

while [guard] { LHS }

-> RHS

This is equivalent to:

[guard] LHS -> { [guard] LHS XOR [NOT guard] RHS }

XOR

[NOT guard] RHS

We require, however, that expressions of the form LHS LHS are not permitted in

Finesse. This is a syntactic restriction aimed at clearly distinguishing iteration from

sequential behaviour and avoiding ambiguity when an expression appears more than

once in a specification. It makes little difference to the language semantics, as sug-

gested by our definition of the while construct semantics above.

We also allow an unguarded iteration construct:

loop { LHS } -> RHS

This is equivalent to:

LHS -> { LHS XOR RHS }

XOR

RHS

97

In other words, this construct allows the LHS behaviour to be executed zero or more

times, but the RHS behaviour can be chosen at the end of any iteration. The choice of

the RHS behaviour terminates the loop, and the RHS behaviour must be immediately

distinguishable from the LHS behaviour.

5.5 Resolving Event References

Throughout a Finesse program it is necessary to make references to other events that

have occurred. The nature of role/interaction behaviour specifications is such that

while these references identify a single event template definition from a role, they can

identify multiple event instances. This is due both to iteration (multiple instances of

the event executed by a single participant) and roles with greater than one participant

(multiple instances of the event executed by different participants). The syntax also

allows a prev keyword for referencing the immediately preceding event. In order to

define the language syntax, we must specify how these event references resolve to

particular events.

Within a role specification, all references resolve to the nearest causally preceding,

co-located event that matches the reference. The term “nearest” means that there is no

other causally succeeding event with the same name. References in role specifications

should not include a role name. Since role behaviour cannot include parallel iteration,

this rule ensures that the reference can only resolve to a single event. The prev ref-

erence always identifies the event specified immediately to the left of the current ->

operator. The prev keyword is invalid where the LHS is an expression with multiple

tail events.

Within an interaction specification, the reference resolves to the nearest causally

preceding event that matches the reference. Where multiple concurrent events are

identified by this rule (i.e. there is no single matching event that is causally after

all other matching events), a co-located event is given preference, then an event is

randomly chosen. The prev references identifies the event specified immediately to

the left of the current -> operator. If this reference is of the form Role.event with

a cardinality greater than one, then a single event can be randomly chosen from the set.

98

The prev keyword is invalid where the LHS is an expression with multiple distinct tail

events.

Note that this interpretation of event references is language specific. The semantic

model described in the preceding chapter is quite able to accommodate an alternative

syntax that uses event references to identify sets of events, for example.

5.6 Guards

A guard is a logical expression that must be satisfied before an event can be executed.

This is in addition to any cardinality or causal predecessor constraints. In the Finesse

language, guards correspond exactly to the guard semantics presented in the previous

chapter. They are introduced using the following syntax:

[guard] LHS

where guard is a logical expression and LHS is any behaviour expression. As with

the RHS of our behavioural operators, the guard applies across all root nodes of the

expression. Where an event template has both a guard and a cardinality constraint,

they must be contained within the same square braces and joined by a logical AND

operator. While this is slightly inconsistent semantically, it makes considerable sense

syntactically since the cardinality is a restriction that must be satisfied when executing

a set of events.

A named expression might appear in several parts of a specification, requiring

synchronization of all instances. Distinct guards can be applied to any instance of the

expression, with the result being the logical AND of all guard expressions.

We defer the detailed syntax of guard expressions to the implementation, since

it will depend on the set of functions and operators applicable to the supported data

types. It is required, however, that all implementations support a functional guard of

the form f x x and the logical operators AND, OR, XOR and NOT. A number of

explicit guard functions associated with time and ordering constraints are specified in

the following subsections. Note that the syntax of cardinality constraints is specified

previously in section 5.3.7.

99

5.6.1 Time Guards

Timing constraints are included in Finesse programs through guards and the provi-

sion of two built-in functions: timeless and timemore. These functions take an event

reference and a real-valued expression (which could itself be a function). timeless

evaluates to true if the number of seconds since the referenced event is less than the

supplied value. Conversely, timemore evaluates to true if the number of seconds since

the referenced event is equal to or greater than the supplied value. For example:

e1!() -> [timeless(e1, 10.0)] e2?()

This specifies that the event e2 must occur within 10.0 seconds of e1. As specified in

the semantic model, guards involving time are only permitted to compare time deltas.

Literal time deltas are represented as a real number indicating a number of seconds.

Implementations of Finesse should allow for clock skew when evaluating time guards

involving events at different locations.

5.6.2 Event Causality Guards

A set of guards are supplied for ensuring appropriate causality exists between events.

There are three guard functions in this category, namely before, occur, and replyto.

The before function accepts two event references and returns true if the first referenced

event is causally before the second. The occur function takes an event reference and

returns true if an event matching that reference exists in the causal history of the current

event. The replyto function takes two event references and returns true if the second

event referenced is causally preceded by the first. In addition the first event reference

is restricted to events co-located with the guarded event.

The use of before and occur functions is fairly self-explanatory, however, the

replyto guard deserves further discussion. This guard is used in contexts where a

particular event can only be executed if the matching causal dependent (the second

parameter) is generated as a result of a specific preceding event. This allows us, for

example, to filter out stray replies to multicast requests that should be discarded. The

100

reply guard also serves to support an internal optimization in implementations: in a sit-

uation where there are multiple clients in an RPC interaction model, the default (and

correct) behaviour would be to send the RPC reply to all clients even though only a

single client made the request. This guard allows the server(s) to determine that only

a single client can use the reply, therefore only one reply need be sent.

5.7 Parameter Relationships

An event template specification can include a specification of its parameter relation-

ships. The specification defines the values of the parameters. For example:

e1!(x:t1, y:t2) -> e2?(z:t3) {z = f(e1.x)}

Parameter relationship specifications can refer to any identifiable, causally preceding

event using the event reference semantics defined in section 5.5. There is no require-

ment that all parameters of any output event must be consumed by an input event, and

the parameters of an output event can be used many times. Parameter relationships

are functional, allowing for transformation of data. For all parameter relationships,

the function or operator used must be well-defined for the data types of the parame-

ters. This means, for example, that equality (=) can be used for parameters of different

types provided it is well defined in the context of the binding. Due to its common

use in remote procedure call, Finesse has shorthand syntax for name equivalence of

parameters, that is:

e1!(x:t1, y:t2) -> e2?(x:t1, y:t2) {*= e1}

This specifies all parameters of e2with names matching parameters in e1 are assigned

the value of that same-named parameter. There is no requirement that all parameters

in either e1 or e2 be assigned by the operator. Note that as described in the discussion

of event reference semantics, the keyword prev can be used to refer to the immediately

preceding event in the current specification context.

101

5.8 Reuse and Generics

The Import keyword allows role and binding definitions to be re-used in the current

Finesse program. It is followed by the name of a Finesse program to import. The role

and interaction definitions contained in that program are then able to be used within the

current program. For roles, they can be referred to using ProgramName.RoleName

syntax in a role definition only. This syntax simply copies the identified role definition

from the imported program into the current program. If the role definition is to be used

multiple times, a name scope must be defined to distinguish the instances.

The interaction definition contained within the program can be reused only within

the interaction specification. It can be referenced using only the program name, but

must be parameterized by a set of named role behaviours that match the roles of the

imported binding. The semantics of this reference is to copy the interaction behaviour

from the referenced program with the role name in any Role.event specification

replaced by the fully-qualified behaviour name (i.e. Localrole.behav.event.

In the simple case, role and binding definitions are re-used without parameteriza-

tion, for example:

Binding Message {
Roles {

Sender {send!(x:t1)}
Receiver {receive?(x:t1)}

}
Interactions {

Sender.send -> Receiver.receive {*=Sender.send}
}

}

Binding UseMessage {
Import Message;
Roles {

Send2 {send1 {Message.Sender}
-> send2 {Message.Sender}}

Recv2 {recv1 {Message.Receiver}
-> recv2 {Message.Receiver}}

}
Interactions {

Message(send1, recv1) AND
Message(send2, recv2)

}
}

102

The roles of the Message binding are used to define two actions each in the Send2 and

Recv2 roles respectively. The interactions section of the UseMessage binding simply

binds those actions together using theMessage binding. While this is useful, the ability

to parameterize roles with arbitrary parameter lists give more flexibility. This requires

an incomplete binding program definition with placeholders for parameter lists, used

as follows:

Binding Message {
Roles {

Sender (MSG) {send!(MSG)}
Receiver (MSG) {receive?(MSG)}

}
Interactions {

Sender.send -> Receiver.receive {*=Sender.send}
}

}

Binding UseMessage {
Import Message;
Roles {

Send2 {send1 {Message.Sender(x:t1)}
-> send2 {Message.Sender(y:t2)} }

Recv2 {recv1 {Message.Receiver(x:t1)}
-> recv2 {Message.Receiver(y:t2)} }

}
Interactions {

Message(send1, recv1) AND
Message(send2, recv2)

}
}

Wherever a placeholder name is encountered in the imported binding definition, it is

replaced with the parameter list provided in the instantiation. This allows us to reuse

the interaction behaviour with different event parameter lists, allowing definition of

bindings such as generic RPC or multicast. Note in this case the usefulness of name-

equivalence for parameter relationship specifications.

5.9 Concluding Remarks

This chapter has described the Finesse language, a coordination language for open dis-

tributed systems. A Finesse program or binding describes the roles of components in a

103

distributed application and the interactions between those roles. Roles and interaction

are described using event relationships, in particular, causality (ordering), parameter

and timing relationships. Finesse has strong support for group communication and

provides abstraction through structuring and composition features.

Finesse has a number of features that are novel in coordination languages. Its

key advantage is the ability to be executed over the distributed, asynchronous execu-

tion model defined in chapter 4. Also of particular interest is the abstraction that it

provides over messaging. Messaging is implied by declarative relationships between

events, meaning that a compiler or interpreter can optimize the number and content of

messages transferred between components. The use of explicit, but abstract, parameter

relationships allow parameters to be ignored if not used. The use of causality relation-

ships allows parameters from multiple events to be combined into a single message

from a particular interface where appropriate.

Openness and flexibility is enhanced by allowing arbitrary parameter relationships.

This can allow, for example, a DCE RPC client to call a CORBA server, provided

the appropriate infrastructure and transformation functions are in place. The Finesse

language has no structural knowledge of data types, freeing it from the confines of

a specific data model. The use of functional relationships between parameters also

provides good support for including legacy components and applications in a Finesse

binding.

The inclusion of time constraints is both novel and very useful. Such constraints

can be used to explicitly specify timeouts and associated behaviour, or to describe

quality of service constraints on, for example, the delivery of multimedia streams.

It should be emphasized that the Finesse language is an example of how the exe-

cution model described in the preceding chapter can be used. Other syntax definitions

are possible and in particular, a graphical programming language might be particu-

larly appropriate in a coordination context. The definition of such a language is not

addressed by this thesis.

104

Chapter 6

Runtime Engine

6.1 Overview

This chapter describes the design of a distributed runtime engine implementing the

Finesse semantics defined in chapter 4 and providing a run-time target for the Finesse

language described in the previous chapter. A Finesse program is captured by a set of

event templates that describe the possible partial orderings of events, their parameter

relationships, and guard expressions for events which can include timing constraints.

A correct execution of a program is a partial order of event execution that matches one

of the partial orders described by the program, with each event satisfying the required

parameter relationships and any guards.

The runtime engine executes a Finesse program by executing enabled events. The

initial state of the program is represented by the set of events that have no predecessors,

hence can be executed at any time provided their respective guards are satisfied. The

execution of an event potentially enables other events which are subsequently executed

and so on.

A Finesse program is executed by a set of distributed participants. Each distinct

event is executed by a distinct participant in the program. The runtime engine hence

operates as a set of distributed runtime engines, one for each participant. The par-

ticipant engines maintain a graph of occurred and pending events. Pending events to

be executed locally can be fired by a participant when all required predecessors are

known to have occurred (it has sufficient offers), and when the event guard expres-

105

sion, if any, is satisfied. When an event is executed, a notification of that event is sent

to those participants with potentially succeeding events, that is, events to which this

event makes an offer of causality. The graph maintained by each participant is a par-

tial view of the system state because remotely executed events might not be visible in

the graph at any given time. In general, no single participant will have a complete

view of system state. The participant runtime engine is thus responsible for maintain-

ing the graph of occurred and pending events, executing local enabled events, and for

delivering notifications of executed events to local software components and remote

participants.

This design has been implemented in a prototype written in the Java language.

The prototype does not fully implement the semantics described here, but is able to

correctly execute most valid programs. The limitations of the prototype are noted in

the appropriate sections.

Although not strictly required, the implemented semantics includes explicit sup-

port for some elements of the language. In particular, it uses the structuring concepts of

role and interface, where a role defines co-located behaviour and an interface provides

a specific location for role behaviour. The implementation allows multiple interfaces

to fill a role, meaning that the event templates describing the role need to be distin-

guished by interface name in order to meet the semantic model requirement for an

explicit association between an event template and a location.

The implementation also provides causal timestamp semantics for event notifica-

tions. This allows each participant to deterministically build a consistent causal his-

tory graph to resolve event references and enforce any ordering constraints implied by

guards. While these semantics can be implemented at compile-time by other, more-

specific mechanisms, our approach allows us to easily add additional guard semantics

and also provides a more useful platform for debugging programs.

The following sections present the design of the runtime engine and its prototype,

including the internal representation of programs, the management of enabling rela-

tionships, building a causal history graph, and a number of ancilliary issues.

106

6.2 Representing Programs

Each participant requires a copy of the program to be executed at initialization. This

executable representation of the program describes the set of event templates that form

the program. Each template is assigned to a role, and defines the predecessor require-

ments, successor requirements, guard expression, and parameter relationships expres-

sion. It also includes a set of forward parameter references, allowing the runtime

engine to determine where each parameter value might be required. For internal pro-

cessing efficiency, local successors are distinguished from remote successors.

The syntax of this internal form is a set of well-defined S-expressions. While not a

high-level language, this form can be written by hand with minimal effort or could be

the target of a Finesse language compiler. A parser for these expressions has been built

to support the prototype implementation. The parser returns the set of event template

objects as defined by the S-expressions, ready for execution by the runtime engine.

The association of interfaces and roles is performed at initialization time, so from

the perspective of the semantic model, this association forms part of the program defi-

nition. The engine distinguishes between events templates executed at different inter-

faces having the same role at run-time. Since the Finesse language has been designed

with multiply-filled roles in mind, this is not especially difficult and the implementa-

tion is discussed in a later section of the document.

6.3 Initialising a Program Execution

The execution semantics requires that all participants in a distributed execution be-

gin with a copy of the program and an initially empty execution history. The Finesse

language adds the ability to associate interfaces (locations) with roles (co-located be-

haviour) at initialization time. The approach taken to satisfy these requirements is as

follows:

1. A binder is instantiated with a Finesse program in the internal form. It parses

the role definitions and waits for offers to fill roles from participants.

2. Each participant engine is instantiated with the name of a role that they are able

107

to implement and the location of the binder. The participant engine advises the

binder that it is able to fill the named role and nominates a communications

endpoint (in this case, a TCP address) for participation in the program.

3. When the binder has sufficient participant offers to instantiate the binding (gov-

erned by the role cardinality constraints), it distributes the program and a list of

participants to each participant and waits for an acceptance of that program from

them.

4. Once the participants have accepted the program, a confirmation is sent to each

of them and the program can begin.

There are a number of important points to note about this behaviour:

The binder is considered to be a distinct entity, therefore allowing program in-

stantiation by either one of the participants or a distinct controlling entity.

Each participant advertises only their ability to fill a named role. They do not

nominate a specific program. This allows, for example, a participant with an

RPC client interface to operate unmodified in both a unicast and multicast RPC

binding.

It is quite possible for the advertising and acceptance of a program offer by

a participant to be made somewhat separate from the execution of the program,

for example, the advertising and acceptance of a program might be performed by

a secured management application that checks the credentials of the participants

prior to establishing the binding.

These features allow the implementation of functional behaviour to be entirely

separated from the administrative tasks associated with creating a program instance.

This is of particular interest for cross-enterprise interaction, for example electronic-

commerce applications. If you consider the program to reflect the contract between the

parties fulfilling the roles, it is quite likely that the contract negotiation will be complex

and often different for each program instance. The separation of concerns provided by

the initialization approach makes this quite feasible to implement. You could also, for

108

example, have distinct binding processes for internal and external interactions without

modifying the functional behaviour.

6.4 Executing a Program

Each participant engine has a copy of the program currently being executed and main-

tains a graph representing the current system state, as seen by that participant. The

graph maintained by each participant is built by adding events created from event tem-

plates to a pending portion of the graph when any of their immediate predecessors are

known to have occurred or immediately if they have no direct predecessors. This por-

tion of the graph is known as the front. The information about the ordering of events

required for this addition is contained in the templates. When all predecessors are

known to have occurred and the guard is satisfied, the event can be executed by the

engine. When executed, the event is moved from the pending portion of the graph to

the history which contains information about executed events. Note that an engine can

only execute events associated with its role.

The graph therefore contains both events that have occurred and events that are

expected to occur. Whenever a local event is fired or knowledge of a remote event

occurrence is received, the event is placed in the history and any immediately succeed-

ing events are added to the front if not already present. Each event in the front is then

evaluated to determine if it can be executed.

When an event is executed by a participant, information associated with that event

is transmitted to all other participants that have immediately succeeding events in the

Finesse program, have parameter relationships with the executed event, or have guards

that reference the executed event. This transmission carries a causal timestamp for

the event, identifying recent events in the history of the sender and allowing other

participants to correctly update their view of the system state. The execution of a

Finesse program continues in this fashion until no further events can be enabled or an

error occurs.

The following subsections outline the details of execution, including the enable-

ment of events, evaluating guards, maintaining the history, and implementing parame-

109

ter relationships.

6.4.1 Causal Enablement

The causal enabling relationships between events can be quite complex because Fi-

nesse programs can specify a considerable level of non-determinism in the partial or-

dering of events. The successors and predecessors of an event can be grouped with

logical AND, OR, or subset choice relationships as described in the preceding chap-

ters. The subset choice relationship is equivalent to an OR with a cardinality constraint.

These relationships can be nested to an arbitrary depth, so the runtime engine repre-

sents them as decision trees.

Each event (pending or not) requires distinct decision trees for predecessors and

successors because the decision trees for enablement of events are not symmetric: the

information contained in the successor decision tree of an event includes knowledge

of all possibly succeeding events. Such information is not required or used by any in-

dividual successor. Similarly, the predecessor tree of an event includes knowledge of

all possible predecessors and this information is not required or used by any individ-

ual predecessor. This separation corresponds to the distinct notions of the offers and

requires sets in the semantic model.

A predecessor needs to evaluate its successor tree after each acceptance of an offer

to determine if it can continue to offer its causality to other successors. Similarly, a

pending successor needs to evaluate its predecessor tree to determine if it continues

to require the causality of a predecessor. When possible causal relationships between

predecessor and successor are broken, the edge can be removed from the graph. Note

the implication that edges in the graph between events in the history and events in the

front are tentative and only become fully fledged edges when both events are in the

history (i.e. both have been executed).

6.4.2 Guards and Timing Relationships

The general form of a guard expression is a set of boolean-valued logical expressions

connected by AND, OR, and XOR operators. These expressions can be nested. Ex-

pressions in guards can reference the parameters and timestamp of causally preceding

110

events. The general form of these expressions is a boolean valued Java method, or

for numeric values, the usual comparison operators can be used. Event references are

resolved using the causality information supplied in the causality vector described in

section 6.4.4 below. Non-boolean values within expressions can be defined as literals

(where supported), direct references to event parameters, or Java methods. Method

parameters can be expressed using the above value expressions.

Once an event has sufficient offers to be causally enabled, it should always be pos-

sible to evaluate the guard and any event references that it contains, with one excep-

tion: short circuit evaluation can in some cases avoid resolving a parameter reference.

In most cases, however, this should not be necessary.

Timing relationships in guards require special handling. There are explicit Time-

Less and TimeMore guards that define a time relationship between the current event

and a causally preceding event. The semantics of these have been defined in chapter

5. Any synchronization of time across distributed components is subject to an accu-

racy error, and should be taken into account when evaluating time constraints. The

prototype implementation does not deal with this issue: it assumes that timestamps

provided by an appropriate time synchronization algorithm (e.g. NTP) are sufficient

for most purposes. Future versions, however, might attempt to determine communica-

tions latency and estimate a bound on the error. The error bound can then be applied

to the edges of the time bands associated with each event.

6.4.3 Enabling an Event

The enablement of a pending event requires the satisfaction of both causal enablement

requirements and the event guard. The guard, however, can only be evaluated correctly

relative to a specific set of causally enabling events. We address this issue by through

the pending event mechanism: a set of offers from predecessors is provisionally ac-

cepted by the pending event as knowledge of those predecessors is available. When

the event is causally enabled, the guard is evaluated against the set of enabling events.

If the guard fails, alternative offer sets are evaluated to see if any can enable the event.

The search space of offer sets is typically small but potentially quite large. When a

guard fails, it is often because an alternative path has been chosen that does not include

111

the current event. There are a number of identifyable circumstances, however, where

alternative offer sets can enable the guard:

when multiple reply events are generated but only a single reply is used (e.g.

the multicast RPC example), offers from the other replies will be passed to the

next reply acceptance event. With a reply guard in place, these offers cannot be

accepted and a more recent reply must be chosen.

when a stream of events must be delivered in order but some events can correctly

be dropped (e.g. an audio stream), an attempt could be made to deliver a dropped

event out-of-order. An ordering guard would make the offer from this out-of-

order event invalid.

in an RPC binding with multiple instance of the client role, a reply guard might

be used to ensure that a reply is only used by the requesting client instance. If

replies are sent to all clients (the default behaviour associated with roles), the

client must distinguish between replies to its own requests and other replies.

Note that in all cases the problem exists because there are multiple events with the

same template name, either through iteration or multiply-implemented roles. While

other circumstances can lead to alternative offer sets, we believe this is the most likely.

We leave the efficient searching of this offer space to future research. Intelligent evalu-

ation of guard logic should in most cases be able to minimize searching. The prototype

implementation does not implement searching of the offer space at all. If the initially

chosen set of offers does not satisfy the guard, the event becomes impossible. A num-

ber of heuristics are used to avoid some of the specific situations described above and

the prototype thus allows correct programs to execute in most circumstances.

6.4.4 Managing the Event History

One of the implementation features is that the graph built by the runtime engine of each

participant in a program execution properly reflects the causal relationships between

events. The key issue is that we can only guarantee that a participant is aware of events

it has executed locally, and any remote events can only be correctly positioned in the

112

graph if their relationship with local events is captured. Information about events exe-

cuted by a remote participant therefore identify the nearest causally preceding events

at the local participant.

To clarify this problem, consider the following example:

1. Participant P sequentially executes output events A and A . These are trans-

mitted to participant Q. P is expecting Q to execute an output event in reply to

each of A and A .

2. Participant Q executes events B and C in reply to A and A respectively.

3. Knowledge of B and C is received at P in a single message.

4. How can P determine how to match the requests and replies?

In the example above, the problem must be solved by having P supply an identifier

that must be carried by any replies. Since we are already naming events to allow

us to maintain a graph, it seems appropriate to use the event name. The situation is

complicated by the fact that there can be an arbitrary number of intervening events

executed by any of the participants, and the reply could generated by an event at a

different remote participant that has received a subsequent request from Q. Request

delegation is an example of this. A further complication is introduced when a remote

event joins two distinct branches of a local computation: it must carry identifiers for

both local events since they are causally independent.

Knowledge of an event is hence transmitted with a vector of event names iden-

tifying the nearest causal predecessors of each participant. By definition, an event

executed from a particular template will causally succeed previous occurrences exe-

cuted from that template. Since the resolution of event references is the most common

use of this information, we include include the most recent occurrence of a causally

preceding event from each event template at that participant. While this potentially in-

creases the size of the vector, it allows simple and fast searches of the vector to resolve

event references. When an event is executed, the identities of all events that causally

enabled this event are included in the vector, along with the merger of their vectors.

Any redundant entries in the new vector are removed (i.e. only the most recent of two

same-named events need to be included).

113

The primary implication of the need to carry event identifiers is that the size of this

event causality vector can become significant. It is important to note, however, that

the size of the vector is bounded by the sum of the number of unique template names

in each role multiplied by the cardinality of that role in a program instance. In most

cases, the implicit and explicit parallelism in the program specification will ensure that

the likely size remains well below this theoretical bound. This is particularly the case

for multiply-implemented roles, since each instance of the role is executed in parallel

with others. Note that our use of causality vectors is somewhat different from the

general and unbounded case of vector clocks [40] because we have a bounded number

of participants.

There are other opportunities for optimization. As mentioned in the introduction to

this chapter, the need for causality vectors can be removed by intelligent compilation.

Guard constraints that imply ordering can be replaced with explicit request identifiers

or counters and guards that check those values. This avoids any overhead for programs

and program fragments that do not require ordering constraints. It would also be possi-

ble to build an implementation of the semantic model that explicitly required all event

references to be resolved by the set of offers made directly to the referring event. This

model can implement the event reference semantics of the language by generating ad-

ditional offer requirements at compilation-time, or the event reference semantics could

be modified apply the restriction directly.

6.4.5 Parameter Relationships

A relatively simple approach to parameter relationships is employed in the implemen-

tation of Finesse. The data type associated with a parameter is defined as a string

identifying the Java class of the data type. There are four possible ways of defining the

value of a parameter:

if left undefined, it is expected that the host program will provide a value for the

parameter when initiating the event.

if the data is a string, integer or real value, a literal value can be used

by a direct reference to a parameter of a preceding event with the same type

114

as a Java constructor or method that yields a value of the correct type. The

parameters of this method can be expressed using literals, direct parameter ref-

erences, or nested method calls.

Reference to preceding event parameters are resolved by searching the causality

vector associated with the current event. By definition, the most recent causally pre-

ceding event of a given name will exist in the vector. A correct program cannot include

parameter references to events that are not present in the vector because a parameter re-

lationship must be supported by a causal relationship. Where multiple matching events

from different participants exist, preference is given to a local event. Otherwise, the

first located match is used.

6.5 Language Binding

The approach to language binding used in the implementation of the Finesse engine re-

quires that the host program (that is, the program participating in the binding) synchro-

nize with the engine on every event executed. This is a relatively low-level mechanism,

but provides significant flexibility and power.

There are two calls made to the engine. The first call readyFor indicates that the

host program is ready to execute a particular event, and provides any parameter values

required for that event execution. An event execution handle is returned by the call.

This call returns immediately without waiting for the event to occur. The second call

waitFor accepts an array of event execution handles, and returns when any of the events

indicated by those handles has been executed, or when any of the nominated events has

become impossible through guard failure. An object containing the event handle and

all event parameters is returned by this call.

Higher-level mechanisms can be easily built on top of this mechanism. It would

be relatively simple to implement, for example, an object offering a number of remote

procedure calls, each possibly having exceptions. The call from the host program

would result in a readyFor call for the request event and any possible exception events,

then a waitFor to ensure the call is made, followed by a readyFor call for the reply

event and any possible exception events, then a waitFor to collect the reply. The ex-

115

ception events can be delivered through Java exception handling mechanisms if they

occur, or the method could return normally when the reply event is executed. In many

cases, such a wrapper could be automatically generated from the Finesse language pro-

gram, but the lower-level mechanism is available for unusual cases that require special

handling.

6.6 Other Design Issues

The following subsections discuss some additional design features that have not been

implemented, but might be used in a more advanced implementation.

6.6.1 Garbage Collection

At any point in the execution, a participant will maintain a graph of events including

both the history and the front. To avoid having the history grown to infinite size, it

would be useful to implement a garbage collection policy. The rule for garbage col-

lection can be easily defined as follows: events in the history can be garbage collected

when no further offers from that event can be used by a local successor, and it is not

possible for any local event to reference this event in a guard or parameter reference.

6.6.2 Error Detection and Handling

The prototype implementation does not implement error detection or handling. This

section indicates, however, the types of errors that can be detected and how they should

be handled. There are only two possible types of errors that can be detected by the

runtime engine:

1. Incorrect behaviour of a participating component

2. The inability to continue execution due to a programming error

Incorrect behaviour of a component is a local issue and should not affect the other

participants unless it leads to an inability to continue. An exception should therefore

only be delivered to the local component. The local engine could, however, elect to

116

inform an auditing system if one existed. Detection of an inability to continue can be

flagged at the local component and propagated to other components.

The runtime engine makes no assumption about communications reliability. When

an event is executed locally, it sends a message containing the details of the event to

those that require it, but does not in any way attempt to determine if the message

arrives successfully or within a fixed time frame. If the Finesse program assumes that

a particular communication will be successful, then this is a programming error and the

engine will raise an exception if the communication is unsuccessful and it is detected.

This approach might seem draconian, however, it places the error handling re-

sponsibility squarely on the shoulders of the programmer. It is inherently dangerous

to assume the reliability of communication in a distributed system, particularly those

intended for Internet-scale networks. It is reasonable, however, to assume that commu-

nication will often be successful. Pre-packaged solutions that provide generic handling

of communications failure can be coded as Finesse modules. This avoids the assump-

tion that reliable communications is always desirable. In mobile computing, for exam-

ple, a component is only occasionally connected. Using the CORBA request/timeout

approach in such situations is undesirable. The Finesse engine thus provides flexi-

bility so that the programmer can write their own communications error handling in

situations that have special circumstances.

It is expected that an intelligent compiler for Finesse would analyse the code and

pinpoint potential problems, including assumptions of communications reliability, pos-

sible deadlocks, and possible livelocks.

6.6.3 Reliable Communication

There is an interesting possibility for future research into making the engine auto-

matically support reliable computing. We could add a condition that the executor of

an event is responsible for ensuring that all remote participants that have immediate

causal successors or that reference the parameters of the event are aware of the event.

This implies that the event must be maintained at the executor until it receives acknowl-

edgment that the event data has been received at all of these other participants. This

acknowledgment could rely on causality vectors or piggy-backed acknowledgements

117

transmitted with subsequent events from those participants. Using this approach, there

is potential for developing intelligent compilers or run-time engines that determine the

most efficient acknowledgment strategy based on application semantics.

6.7 Concluding Remarks

This chapter has outlined the design of a distributed runtime engine to support the se-

mantic model and language defined in the preceding chapters. The chapter presented

the design of the runtime engine and its prototype, including the internal representa-

tion of programs, the management of enabling relationships, building a causal history

graph, and a number of ancilliary issues.

The prototype implementation demonstrates the feasibility of the design and the

underlying semantic model. While there are some efficiency and resource usage is-

sues in the prototype that deserve further attention, the design is sound, matches the

semantic model quite closely, and provides a solid basis for further research and inves-

tigation.

118

Chapter 7

End-to-End Example

This chapter captures the concepts of the preceding chapters in an end-to-end example

of the Finesse system. We define a simple remote procedure call example and describe

the compilation, instantiation, and execution of the program. The intent is to provide a

high-level understanding of the way the pieces of the Finesse system fit together, rein-

force understanding of the execution model, and establish a context for understanding

more complex examples.

7.1 Example Program

The following example program describes a simple remote procedure call as a se-

quence of events: client send, server receive, server send, then client receive. A single

parameter is sent with the request, and a single parameter is included in the reply.

119

Binding SimpleRPC {

Roles {
Client {

send!(x:T1) -> receive?(y:T2)
}
Server {

receive?(x:T1) -> send!(y:T2)
}

}

Interactions {
Client.send -> Server.receive {x = Client.send.x} AND
Server.send -> Client.receive {y = Server.send.y}

}
}

7.2 Compilation

As discussed in preceding sections, the compilation of the example results in a set

of event templates that define the potential causal successor (offers) and predecessor

(requires) relationships, any event guards, and any parameter relationships between

events. We will describe the compilation in two passes with the first pass creating the

base event templates from the Role specification and the second pass adding addi-

tional constraints and information from the Interactions specification.

For ease of understanding, the binding and event template data is presented in

subsequent sections as a description list rather than the S-expression syntax used by

the prototype implementation.

7.2.1 Roles Compilation

The roles compilation results in the capture of the role names, their cardinality and a

set of base event templates:

120

Roles Client, cardinality 1
Server, cardinality 1

Client send Role: Client
Event name: send

Guard: true
Parameters: (x:T1)

Requires: ()
Offers: (Client.receive)

Client receive Role: Client
Event name: receive

Guard: true
Parameters: (y:T2)

Requires: (Client.send)
Offers: ()

Server receive Role: Server
Event name: receive

Guard: true
Parameters: (x:T1)

Requires: ()
Offers: (Server.send)

Server send Role: Server
Event name: send

Guard: true
Parameters: (y:T2)

Requires: (Server.receive)
Offers: ()

7.2.2 Interactions Compilation

The compilation of the interactions specification adds remote predecessor and succes-

sor relationships and the necessary parameter relationships. It can also potentially add

guard expressions. For both guards and parameter relationships, the new terms are

added with a logical AND.

121

Roles Client, cardinality 1
Server, cardinality 1

Client send Role: Client
Event name: send

Guard: true
Parameters: (x:T1)

Requires: ()
Offers: (Client.receive)

Client receive Role: Client
Event name: receive

Guard: true
Parameters: (y:T2) (y = Server.send.y)

Requires: (Client.send AND Server.send)
Offers: ()

Server receive Role: Server
Event name: receive

Guard: true
Parameters: (x:T1) (x = Client.send.x)

Requires: (Client.send)
Offers: (Server.send)

Server send Role: Server
Event name: send

Guard: true
Parameters: (y:T2)

Requires: (Server.receive)
Offers: (Client.receive)

7.3 Participant Behaviour

The compiled program describes the distributed execution behaviour associated with a

simple remote procedure call. It is important to remember, however, that the program

only defines the visible behaviour of the participant programs and not the internal

behaviour of the participants themselves. In order to execute the program, we require

two participants that have externally visible behaviour compatible with the Client and

Server roles respectively. We do not prescribe any particular notion of compatibility:

if a participant attempts to execute incorrect behaviour, the runtime engine will throw

an exception back to the participant. As described in the preceding chapter, a Java

API is defined for participants to interact with the runtime engine. This API allows the

participant to synchronize with the engine on locally executed events, including the

transfer of parameter values into and out of an instance of the Finesse engine.

122

In this case, the Client participant must synchronize with the engine on the

send event and provide an appropriate value for the parameter X, then synchronize

with the engine on the receive event to retrieve the Y parameter value returned by

the remote procedure call. The Server participant must synchronize with the engine

on the receive event and retrieve the X parameter value supplied by the client, then

synchronize with the engine on the send event and provide an appropriate value for

the Y parameter to return to the client.

7.4 Instantiation

On startup, each participant or a manager process for the participant creates an in-

stance of the Finesse engine to execute the distributed program. The responsibility

for instantiating a binding across the participant engines can be taken by any party,

including both participants and third parties. The prototype environment uses a sepa-

rate binder process that waits for sufficient offers from participants to fulfill the roles

in a predefined binding. Every participant identifies a communications address for

their engine. This process is arbitrary, however, and mechanics of binding creation are

somewhat orthogonal to binding execution except that on instantiation, each engine

must know the binding program being executed, the set of participants, and the role of

each participant.

7.5 Execution

Once the binding has been instantiated, each engine parses the binding program and

builds a set of event templates and two data structures: a history and a front. The

history contains events that are known to have been executed and is initially empty. The

front contains the set of events that are awaiting execution and is initially populated

with those events with no mandatory causal predecessors.

The following descriptions describe the execution of the example binding program

in terms of the enabling of events, their execution, and the subsequent notification of

other participants.

123

7.5.1 Initial Client State

The client role involves templates for the send and receive events with the send

event initially in the front and enabled, since it has no predecessors and a true guard.

We depict the state graphically follows:

history frontnow

send

Figure 7.1: Initial state of client

7.5.2 Initial Server State

The server role also has two event templates for the receive and send events, but

neither is initially in the front.

7.5.3 Client Executes Send

The only event initially enabled is the client send event and this event is executed as

follows:

1. the engine synchronizes with the participant on the event, obtains a value for the

X parameter, and binds other environment values (e.g. time) appropriately;

2. the send event from the front is moved to the history;

3. the local successor of the event (receive) is added to the front with an offer

of causality from the send event;

4. the participant executing the Server.receive event is notified of the event

occurrence.

124

The state of the client engine is now:

history frontnow

send receive

Figure 7.2: Client state after send

Note that the receive event in the front still requires a Server.send event

before it becomes enabled.

7.5.4 Server Receives Client Send Notification

On receipt of the Client.send notification the following steps are performed in the

server engine:

1. the Client.send event is added to the history;

2. the Server.receive successor event is created and added to the front with

an offer of causality from that client event.

The state of the server engine is now:

history frontnow

receiveClient.send

Figure 7.3: Server state after receiving client notification

125

7.5.5 Server Executes Receive

The server engine now has its receive event enabled and a value for the X parameter.

The engine executes the following steps:

1. the engine synchronizes with the participant on the receive event with the X

parameter and other environment values bound appropriately;

2. the receive event in the front is moved to the history;

3. the local succesor event (send) is added to the front with an offer of causality

from the receive event.

The state of the server engine is now:

history frontnow

receive send

Client.send

Figure 7.4: Server state after receive

7.5.6 Server Executes Send

After performing appropriate application-specific processing the server participant gen-

erates a value for the return value Y and the following steps are performed in the en-

gine:

1. the engine synchronizes with the participant on the send event, obtains a value

for the Y parameter, and binds other environment values appropriately;

2. the send event in the front is moved to the history;

3. the participant executing the Client.receive event is notified of the event

occurrence.

126

The state of the server engine is now:

fronthistory now

receive

Client.send

send

Figure 7.5: Server state after send

The server engine can determine from the binding program that no further events

are possible at the server participant and it can therefore terminate.

7.5.7 Client Receives Server Send Notification

On receipt of the Server.send event notification, the client engine performs the

following steps:

1. the Server.send event is added to the history;

2. the causal relationship between the Client.send and Server.send events

is recorded, noting that as discussed in the preceding chapter, causal relationship

information is transferred with event notifications in the prototype;

3. an appropriate causality offer from the Server.send event is added to the

receive event in the front.

127

The state of the client engine is now:

history frontnow

receive
send

Server.send

Figure 7.6: Client state after receiving server notification

7.5.8 Client Executes Receive

The receipt of the notification has added the causality offer required for execution

of the receive event at the client participant. The client engine thus performs the

following steps:

1. the engine synchronizes with the participant on the receive event with the Y

parameter and other environment values bound appropriately;

2. the receive event is moved from the front to the history.

The state of the client engine is now:

history frontnow

send

Server.send

receive

Figure 7.7: Client state after receive

The client engine can determine from the binding program that no further events

are possible at the server participant and it can therefore terminate.

128

7.6 Concluding Remarks

This chapter has described the compilation, instantiation, and execution of a simple re-

mote procedure call programming example in the Finesse system. In working through

this end-to-end example, we have shown how the pieces of the Finesse system work

together and described the execution flow of a simple program. While the example pre-

sented excludes some of the features of the language, execution model, and runtime

engine, the example establishes a context for understanding more complex program-

ming examples.

129

130

Chapter 8

Examples

This chapter uses a set of examples to showcase the power and flexibility of the pro-

gramming model and language described in the preceding chapters. The examples

address four distinct applications of Finesse:

1. Programmable, component-oriented middleware

2. Enterprise application integration (EAI)

3. Business to business interaction (B2B)

4. Computer supported cooperative work (CSCW)

Through the variety in the examples presented, we will demonstrate the flexibility,

utility, and power of the Finesse approach. This variety also suggests that the semantics

and structure used by the Finesse approach is suitable for a general purpose distributed

software platform, or in other words, an appropriate “virtual machine” for execution

for distributed software.

The examples are presented in the Finesse language syntax with commentary to

describe the example and its significance. The mapping from the Finesse syntax onto

the semantic model and thus the runtime engine can be inferred from the language def-

inition presented in chapter 5. All examples have been parsed by a prototype language

parser using the grammar defined in appendix A.

131

8.1 Programmable, Component-Oriented Middleware

One of the key advantages of Finesse is the ability to “program” the middleware. This

programmability and the import semantics of the Finesse language allows the produc-

tion of modular and re-usable interaction components. The examples presented in the

overview of chapter 2 have already hinted at the possibilities for a programmable dis-

tributed systems middleware. In this section, we define a set of additional examples

that complement the RPC examples and further demonstrate the utility of the approach.

The key point in these examples is that the middleware platform can provide both

a runtime engine using the Finesse execution model and a set of pre-programmed

library modules to implement common distributed systems interaction protocols. A

programmer can choose to use the provided modules or implement a custom solution

where those modules do not meet the application requirements. The modules can

encapsulate proven solutions, thus minimising the likelyhood of lower-level protocol

errors and allowing the application developer to focus on the application-level issues.

8.1.1 Reliable Multicast

Multicast protocols are useful for process group abstractions and implementing highly-

available services. While the Finesse language has a convenient abstraction for mul-

ticast through roles that can be filled by multiple participants, this does not provide

any guarantees of delivery. We have two choices in providing reliable multicast: build

a runtime engine on a messaging infrastructure that guarantees delivery, or provide a

module for reliable multicast. The former is likely to be inefficient in many situations,

thus we demonstrate the latter in the following example.

132

Binding RelMulticast {
Roles {

[#=1] Sender(MSG, TIMEOUT) {
send!(MSG) ->
loop {
[occur(resend) AND timeless(resend, TIMEOUT)
XOR NOT(occur(resend) AND timeless(send, TIMEOUT))]

resend!(MSG)
} -> done?

}
[#>=1] Receiver(MSG) {

receive?(MSG) -> loop { ack! }
}

}

Interactions {
Sender.send -> [#<=all] Receiver.receive {*= prev}
AND Sender.resend ->

[#<=all AND NOT occur(Receiver.receive)]
Receiver.receive {*= prev}

AND Sender.resend ->
[#<=all AND NOT replyto(Receiver.ack, Sender.resend)]

Receiver.ack
AND [#=all] Receiver.ack -> Sender.done

}
}

Note the use of the replyto guard: this guard is true if an event referenced by the

first parameter is causally before the event referenced by the second parameter. In this

case, this guard specifies that the engine need only resend to those receivers whose

acknowledgements were not visible at the sender when resending.

While this example presents a simple reliable multicast with potentially unbounded

retries, it is relatively straightforward to extend the example for a more complex imple-

mentation. For example, a more complex timeout could be used with a exponentially

increasing timeout up to some configured limit.

8.1.2 Two-phase Commit

The availability of reliable multicast makes the specification of a two-phase commit

protocol somewhat easier. We demonstrate this in the following specification:

133

Binding TWOPC {
Import RelMulticast;
Roles {
Manager {

begin { RelMulticast.Sender((), 5) } ->
prepare { RelMulticast.Sender((), 5) } ->
commit { RelMulticast.Sender((), 5) }
XOR [timesince(prepare) > 60]

rollback { RelMulticast.Sender((), 5) }
}
Resource {

begin { RelMulticast.Receiver(()) } ->
prepare { RelMulticast.Receiver(()) } AND
prepare.receive ->
loop { [occur(ready) AND timesince(ready) > 5

XOR NOT occur(ready)] ready!() } ->
commit { RelMulticast.Receiver(()) }
XOR rollback { RelMulticast.Receiver(()) }

XOR loop { [occur(abort) AND timesince(abort) > 5
XOR NOT occur(abort)] abort!() }

XOR rollback { RelMulticast.Receiver(()) }
}

}

Interactions {
RelMulticast(Manager.begin, Resource.begin) AND
RelMulticast(Manager.prepare, Resource.prepare) AND
RelMulticast(Manager.commit, Resource.commit) AND
RelMulticast(Manager.rollback, Resource.rollback) AND
[#=all] Resource.ready ->

RelMulticast(Manager.commit, Resource.commit)
XOR [#>=1] Resource.abort ->

RelMulticast(Manager.rollback, Resource.rollback)
}

}

It is useful to note that an intelligent compiler could determine that the acknowledge-

ments required for the prepare multicast can be piggybacked with notifications of the

ready or abort actions of the resource role. We could remove the acknowledge-

ments of the prepare event by explicitly specifying a reliable multicast prepare

RPC with either a ready or abort outcome, but the current specification is somewhat

simpler.

Note that this example only describes the interactions between manager and resources:

it does not address the necessary behaviour of the manager and the resources to guar-

134

antee the protocol, that is, the need for resources to hold any locks from the time a

ready response is returned to the manager until the transaction is either committed

or aborted, and the need for the transaction manager to write the decision to commit or

abort to stable storage and allow the decision to be recovered if required. The Finesse

language is not intended to address these issues.

Remember that this two-phase commit program is a module that can be used in

other programs, with the behaviour being synchronized with application behaviour

through appropriate specifications. For example:

Binding StoreX {
Import TWOPC;
Import RelMulticast;
Roles {
Client {

mgr { TWOPC.Manager } AND
mgr.begin
-> store { RelMulticast.Sender((x:Data)) }
-> mgr.prepare

}
[#>=1] Server {

res {TWOPC.Resource} AND
store { RelMulticast.Receiver((x:Data)) }

}
}
Interactions {
TWOPC(Client.mgr, Server.res) AND
RelMulticast(Client.store, Server.store)

}
}

The only necessary synchronization is to execute the transaction manager beginmul-

ticast before storing, then execute the transaction manager prepare and by implica-

tion, the commit protocol, after storing.

8.1.3 Streaming Data

The transmission of streaming data is becoming a common form of interaction between

distributed participants. In this subsection, we first describe a basic streaming data

interaction and its use in an example. We then extend the module to provide lossy

135

streaming data that could be used, for example, in a streaming audio application where

occasional packet loss is acceptable. We similarly extend the base streaming data

module to define a data stream with minimum latency constraints.

In all cases, the endpoint role definitions remain unchanged. The example thus

demonstrates the ability of Finesse to describe a variety of interation protocols includ-

ing quality of service constraints, and the flexibility that comes from clearly distin-

guishing role and interaction behaviour.

We begin by defining the basic streaming data interaction:

Binding BasicStream {
Roles {
[#=1] Producer (DATA) {

repeat {
[occur(produce)] produce!(seqnr, DATA)

{seqnr = add(prev.seqnr,1) }
XOR [NOT occur(produce)] produce!(seqnr, DATA)

{seqnr = 0}}
-> stop!

}
[#>=1] Consumer (DATA) {

while [NOT occur(stop)] {
consume?(seqnr, DATA)
XOR stop?

}
}

}

Interactions {
Producer.produce ->

{ [#=all AND occur(consume) AND
produce.seqnr = add(consume.seqnr,1)]

Consumer.consume {*= prev}
XOR [#=all AND NOT occur(consume)

AND produce.seqnr = 0]
Consumer.consume {*=prev}} AND

Producer.stop -> [#=all] Consumer.stop
}

}

This defines an interaction with a single producer and one or more consumers.

The roles in this binding are parameterized by a list of data items included in each

data packet. Remember from section 5.7 that the “*= prev” parameter relationship

136

statement indicates that all parameters of the event are assigned from same-named pa-

rameters in the preceding event. An explicit sequence number parameter is introduced

to specify that packets must be delivered in order. Note that the consume.seqnr

reference in the guard on the Consumer.consume event refers to the causally pre-

ceding occurrence of the event. The producer signals the end of the data stream by

executing a stop event.

This module could be used, for example, to describe a video broadcast with both

audio and video streams:

Binding BroadcastVideo {
Import BasicStream;

Roles {
[#=1] Broadcaster {

video {BasicStream.producer((vidframe:Picture))} AND
audio {BasicStream.producer((audFrame:SoundByte))} AND
video.stop -> [timeless(prev,0.1)] audio.stop

}
[#>=1] Receiver {

video {BasicStream.consumer((vidframe:Picture))} AND
audio {BasicStream.consumer((audFrame:SoundByte))}

}
}
Interactions {
BasicStream(Broadcaster.video, Receiver.video) AND
BasicStream(Broadcaster.audio, Receiver.audio)

}
}

The use of the stream module in this example is relatively straightforward, with the

exception of the stop interaction. We have added a requirement that the broadcaster

audio stop event occurs within 0.1 seconds of the video stop event. Note, however,

that we haven’t specified any other synchronization requirements across the streams.

We now extend the initial stream to allow the loss of packets:

137

Binding LossyStream {
Roles {
[#=1] Producer (DATA) {

BasicStream.Producer(DATA)
}
[#>=1] Consumer (DATA) {

BasicStream.Consumer(DATA)
}

}

Interactions {
Producer.produce ->

{ [#=all AND occur(consume) AND
subtract(produce.seqnr, consume.seqnr) <= 2]

Consumer.consume {*= prev}
XOR [#=all AND NOT occur(consume)

AND produce.seqnr <= 1]
Consumer.consume {*= prev}} AND

Producer.stop -> [#=all] Consumer.stop
}

}

This is a lossy packet stream allowing at most one in every two packets to be

lost. Note that a more complex specification of packet loss constraints could be im-

plemented by introducing a lostpacket event that records the sequence number

of the last lost packet and placing constraints on the “distance” between lost packets.

While it is clear that such an event need not involve the consuming component, it re-

quires a modification to the consumer role because the event becomes part of that role.

A future version of the language could allow for anonymous events in a role that do

not require participation from the component. Such a lostpacket event could be

implemented using this mechanism and thus make the role compatible with the Ba-

sicStream.Consumer role. While the underlying semantic model is unchanged,

this would also require a modification to the engine implementation since it currently

requires synchronization with the component on all events.

A further extension of the stream interaction could impose latency constraints on

the delivery of packets:

138

Binding FastStream {
Import SimpleStream;

Roles {
[#=1] Producer (DATA) {

SimpleStream.Producer(DATA)
}
[#>=1] Consumer (DATA) {

SimpleStream.Consumer(DATA)
}

}

Interactions {
SimpleStream(Producer, Consumer) AND
Producer.produce ->

[#=all AND timeless(prev,0.1)] Consumer.consume
}

}

This adds a timing constraint to the relationship between produce and con-

sume events, requiring that the consumption events occur within 0.1 seconds of the

produce event. Note that the execution of this specification requires closely synchro-

nized clocks since the produce and consume events occur at different locations. The

AND of the two behaviours in the Interactions section forces synchronization on

same-named events and the appropriate merging of their guard expressions. Note that

a more complex interaction specification could include alternative behaviour if the la-

tency constraint is not met. A similar extension could be applied to the previously

defined lossy stream:

Binding LossyFastStream {
Import LossyStream;
Roles {
[#=1] Producer (DATA) {

LossyStream.Producer(DATA)
}
[#>=1] Consumer (DATA) {

LossyStream.Consumer(DATA)
}

}

139

Interactions {
LossyStream(Producer, Consumer) AND
Producer.produce ->

[#=all AND timeless(prev,0.1)] Consumer.consume
}

}

It is easy to imagine more complex behaviours that define bandwidth constraints

and other quality of service attributes on the interaction. Note, however, that the run-

time engine can only enforce those constraints: there is no mechanism in place to

choose a communication medium at initialization time that ensures these constraints

will be met.

As suggested in the section introduction, these streaming data examples demon-

strate the use of the language for building modules to support non-trivial interaction

protocols involving quality of service constraints. The fact that all of the above stream-

ing data modules use compatible role specifications shows that the use of configurable

interaction mechanisms to connect relatively static components is both feasible and

useful. We do note the restriction on introducing new events for control purposes,

however, this is syntax and implementation issue rather than a fundamental problem

in the semantic model.

8.2 Enterprise Application Integration

The use of enterprise application integration (EAI) toolkits to define and manage the

integration of enterprise-level components is becoming prevalent. There are a number

of such toolkits in the commercial software marketplace, with large vendors like IBM

and Tibco having a significant presence. While these toolkits allow the definition of

integration in a similar manner to the Finesse language, they all require the introduc-

tion of a centralized broker process to manage each integration. It is clear that this

centralized broker becomes both a single point of failure and a performance bottle-

neck. Finesse allows the centralized broker to be removed and replaced with a set of

asyncronous distributed runtime engines that are co-located with the components. We

thus remove the bottleneck and single point of failure.

140

The following example demonstrates the ability of Finesse to replace an EAI

toolkit in the integration process. We use the process of creating a new customer

for a telecommunications provider as our example problem. The process typically in-

volves a front-end application implementing customer management to interact with

the customer (either directly through the Internet or through a customer service repre-

sentative), with the customer first having a credit check, then appropriate details being

forwarded to a billing system and a provisioning system. As a final step, the customer

management system is notified when the process is complete so that a welcoming letter

can be sent to the customer.

Binding NewCustomer {
Roles {
CustMgr {

newCust!(data:CustOrder) -> welcomeLetter!(letter:PDF)
}
Provisioning {

newService?(data:ServiceSpec) -> ready!
}
Biller {

newAccount?(data:AccountSpec) -> ready!
-> activate?

}
Credit {

checkCredit?(person:PersonSpec) -> creditOK!
}
PrintService {

print?(letter:Postscript, address:Address)
}

}

Interactions {
CustMgr.newCust ->

Credit.checkCredit {person = personOf(newCust.data)}
AND Credit.creditOK ->

Biller.newAccount {data = accountOf(newCust.data)}
AND Credit.creditOK ->

Provisioning.newService {data = serviceOf(newCust.data)}
AND Biller.ready -> CustMgr.welcomeLetter
AND Provisioning.ready -> CustMgr.welcomeLetter
AND Provisioning.ready -> Billing.activate
AND CustMgr.welcomeLetter ->

PrintService.print {letter=PDF2PostScript(prev.letter),
address=adddressOf(newCust.data) }

}
}

141

8.3 Business to Business Interaction

A key process in almost all businesses is the purchasing of goods, and the following

example describes a purchasing process to be implemented by Finesse. The impor-

tance of B2B interaction is reflected by the fact that a number of existing research

prototypes and products already address the problem. This existing research and the

advantages of using Finesse are discussed in chapter 9.

The purchasing process described by this binding involves a purchaser, supplier, a

transport organization, and a bank. The process is begun with the issuing of a purchase

order, and concludes with the payment for the order through the bank. We will assume

in this binding that the purchaser and supplier operate in different countries, so an

exchange rate calculation is necessary. The program described explicitly captures the

detail of when a purchase is considered to be delivered, when the payment is expected,

and the date used for calculation of the exchange rate.

Binding Purchase {
Roles {
Purchaser {

locale!(locale:Locale) ->
purchase!(order:Order) -> quote?(amount:Real) ->
{ accept!() -> pay!()

XOR reject!() }
}

Supplier {
locale!(locale:Locale) ->

request?(order:Order) -> quote!(amount:Real) ->
{ accepted?() -> ready!()
XOR rejected?() }

}

Banker {
loop {

exchange?(currA:Currency, currB:Currency, date) ->
rate!(rate:Real)

} AND
accepted?() -> payment?(amount:Real)
XOR rejected?()

}

142

Freighter {
accepted?() ->

pickup?(from:Address, to:Address) ->
delivery!(date:Date)

XOR rejected?()
}

}

Interactions {
-- establish a basic exchange rate for quoting
{Purchaser.locale AND Supplier.locale} ->

Banker.exchange{currA=currencyOf(Purchaser.locale),
currB=currencyOf(Supplier.locale),
date=today} AND

-- purchase order and quote
Purchaser.purchase ->

Supplier.request {order = prev.order} AND
{Supplier.quote AND Banker.rate}->

Purchaser.quote
{amount =
div(Supplier.quote.amount.Banker.rate.rate)} AND

-- quote accepted or rejected
Purchaser.accept -> {Supplier.accepted AND

Freighter.accepted AND Banker.accepted} AND
Purchaser.reject -> {Supplier.rejected AND

Freighter.rejected AND Banker.rejected} AND

-- deliver and pay
Supplier.ready ->

Freighter.pickup {from=Supplier.locale.address,
to=Purchaser.locale.address} AND

Freighter.delivery ->
{Banker.exchange {currA=currencyOf(Purchaser.locale),

currB=currencyOf(Supplier.locale),
date=prev.date} AND

Purchaser.pay} AND

-- purchaser accepts risk of exchange rate
-- variation since quote
Purchaser.pay ->

Banker.payment
{amount =
div(Supplier.quote.amount,Banker.rate.rate)}

}
}

There is an additional point to note in this example and the previous example of

143

EAI interaction. In both examples, the high level interactions are described with little

or no allowance for communications problems, and in particular, the loss of notifica-

tions. The existing prototype makes no guarantees of communications reliability, and

would fail to execute the binding (through unbounded blocking) if any messages car-

rying event notifications are lost. This is not an intrinsic problem with the model or the

implementation: we can easily address the problem by replacing the communications

layer in the prototype with an alternative mechanism that guarantees reliability, for

example, transactional messaging. Products supporting transactional messaging are

readily available and would be the obvious target for an implementation of the model

and language aimed at supporting EAI or B2B interactions.

8.4 Computer Supported Cooperative Work

One of the early motivating influences in this work was the need to provide a flexible

platform upon which to build computer supported cooperative work (CSCW) environ-

ments. The key criticism aimed at existing middleware platforms was the lack of flex-

ibility in interaction models, since CSCW applications often require a combination of

highly synchronous interaction, streaming data, loosely replicated services, and asyn-

chronous interaction. In the following example, we describe a CSCW “workspace” for

a teaching scenario using such a varied set of interaction mechanisms. While we re-use

our prior examples as much as possible, we also assume the existence of a number of

other modules supporting additional interaction types.

The classroom example has a teacher, a mediator, students with video capability,

and students with only audio capability. The class interaction consists of an audio and

video broadcast, a slide presentation, a whiteboard for ad-hoc descriptions, and a text

“chat” channel for student questions. The SlideShow and WhiteBoard bindings have

an explicit mediator role to allow a pointer to be “handed” to students when questions

are being discussed. We expect that the mediator would be a third-party who manages

the interaction between students and the teacher, however, there is no reason why the

person taking on the Teacher role could not also take on the Mediator role.

144

Binding Classroom {
Import BroadcastVideo;
Import SlideShow;
Import WhiteBoard;
Import Chat;
Import Termination;

Roles {
Teacher {

{ video { BroadcastVideo.Broadcaster } AND
slides { SlideShow.Presenter } AND
whiteboard { WhiteBoard.User } AND
chat { Chat.Reader } }
-> term { Termination.Initiator }

}
Mediator {

{ slides { SlideShow.Mediator } AND
whiteboard { WhiteBoard.Mediator } AND
chat { Chat.Reader } }
-> term { Termination.Participant }

}
[#>=0] VidStudents {

{ video { BroadcastVideo.Receiver } AND
slides { SlideShow.Watcher } AND
whiteboard { WhiteBoard.User } AND
chat { Chat.ReaderWriter } }
-> term { Termination.Participant }

}
[#>=0] AudStudents {

{ audio { BroadcastVideo.Receiver.audio }AND
slides { SlideShow.Watcher } AND
whiteboard { WhiteBoard.User } AND
chat { Chat.ReaderWriter } }
-> term { Termination.Participant }

}
}

145

Interactions {
BroadCastVideo (Teacher, VidStudents) AND
BasicStream (Teacher.video.audio,

AudStudents.audio) AND
WhiteBoard (Mediator.whiteboard,

(Teacher.whiteboard,
VidStudents.whiteboard,
AudStudents.whiteboard)) AND

SlideShow (Teacher.slides, Mediator.slides,
(VidStudents.slides,
AudStudents.slides)) AND

Chat ((VidStudents.chat, AudStudents.chat),
(Teacher.chat, Mediator.chat)) AND

Termination (Teacher.term,
(Mediator.term, VidStudents.term,
AudStudents.term))

}
}

This example highlights a number of interesting features of the language:

subordinate modules can integrate common behaviour of distinct roles, for ex-

ample, the teacher and students are peers in the WhiteBoard interaction.

the conjunction of behaviours implies that same-named behaviours in distinct

operands of the conjunction are the same behaviour. This allows a behaviour to

be bound in more than one interaction specification.

the audio-only students are bound to the audio component of the video broad-

cast: the ability to reference component behaviours of roles makes a separate

audio-only behaviour for the teacher unnecessary.

While this example has not explicitly specified the detail of the SlideShow, White-

Board and Chat interactions, it clearly demonstrates how a framework for building

CSCW programs could be provided in a consistent fashion using the Finesse platform.

From this platform it should be relatively straightforward, for example, to provide a

visual programming environment based on a set of common CSCW Finesse modules

for interconnecting users and a set of GUI widgets providing user interfaces for the

roles in those modules.

146

8.5 Concluding Remarks

This chapter has presented a set of examples to showcase the power and flexibility

of the programming model and language described in the preceding chapters. The

examples address four distinct applications of Finesse:

1. Programmable, component-oriented middleware

2. Enterprise application integration (EAI)

3. Business to business interaction (B2B)

4. Computer supported cooperative work (CSCW)

The wide variety in the examples presented shows the flexibility, utility and power

of the Finesse approach. This variety also demonstrates that the semantics and struc-

ture used by the Finesse approach is suitable for a general purpose distributed software

platform. It is worthwhile to emphasize that all of the programs can be executed by

an aynchronous, distributed, runtime engine with no centralized view of the program

state. The only synchronization is that explicitly specified in the programs. This is a

significant feature of the approach that distinguishes it from existing distributed pro-

gramming environments. This combination of capabilities suggests that the Finesse

semantics defines an appropriate “virtual machine” for execution for distributed soft-

ware.

147

148

Chapter 9

Discussion and Related Work

This chapter discusses the Finesse platform presented through specification and exam-

ples in the preceding chapters. In particular, it describes how Finesse addresses the

assertions of the thesis introduction, highlights the strengths and weaknesses of the

approach and implementation, and compares Finesse with related work from a num-

ber of research disciplines. We conclude that Finesse provides a number of unique

advantages in the construction of distributed systems.

9.1 Does it Satisfy?

The introduction to this thesis made three assertions about the needs of distributed

software construction and claimed that the Finesse approach presented in this thesis

addresses those assertions. Having now described Finesse in detail, we return to those

assertions and show that they are addressed.

The first assertion stated that:

The construction of software has become an evolutionary rather than rev-

olutionary process. New software must extend or incorporate old soft-

ware.

The key feature of Finesse that addresses this requirement is the separation of interface

(role) and interaction. The interface definition specifies how a component expects to

interact with its environment without tying that component to explicit external com-

149

ponents. An existing software component can be integrated with new components by

providing an interface defining the behaviour that is to be exposed. The interaction

specification can then define the relationship between the components. The individual

components have no need to explicitly reference other components: this is done by the

interaction specification, which can be replaced or refined whenever new components

are added and/or old components removed. It is also feasible, for example, to support

migration from an old implementation to a new one by including both components in

the integrated system until the new implementation is proven.

This approach has been promoted by research in coordination and architecture de-

scription languages, and its effectiveness is evidenced by the recent uptake of EAI

toolkits in industry. As discussed both in preceding chapters and in subsequent sec-

tions, Finesse enhances the existing approaches through its powerful and flexible declar-

ative description of behaviour, and through the ability to fully distribute the interaction

behaviour.

The second assertion stated that:

Distributed applications must coordinate the activities of multiple partici-

pants with varying relationships. Static abstractions like client-server are

too primitive and inflexible to describe such relationships.

The examples presented in the previous chapter demonstrate the ability of Finesse

to support multiple participants and varying relationships between participants. It is

worth emphasizing, however, that the majority of current middleware platforms pro-

vide a small set of static interaction models: typically, they provide some combination

of remote procedure call, messaging, and publish/subscribe interaction. Some plat-

forms also provide stream-based support. Higher-level interaction models cannot be

captured or componentized as is done by Finesse modules. EAI toolkits do provide an

additional layer above the middleware platform to assist in supporting more complex

interactions, but are hampered by limited semantic models for describing interface and

interaction behaviour.

The third assertion stated that:

Communication networks cannot consistently deliver high-bandwidth, low-

150

latency, low-failure communications. Distributed software must be able to

deal with the degradation or loss of communication.

The bandwidth, latency and reliability of communication networks are of most concern

when synchronous behaviour is required by a set of cooperating application compo-

nents. In a synchronous interaction, a component cannot continue until an appropriate

reply is received from one or more remote components. Unless the network quality of

service can be guaranteed, this causes significant performance, reliability and usability

degradation. While it is not possible to avoid all synchronization in distributed applica-

tions, most distributed software platforms impose additional synchronization require-

ments, either through forcing components to use a synchronous interaction model or by

requiring synchronization to maintain internal state. Finesse shows that it is possible to

avoid imposing synchronization requirements in the distributed software platform. We

believe it is unique in doing so amongst implemented distributed software platforms.

In addition to providing a platform with no runtime synchronization requirements,

the Finesse approach of declaratively specifying event dependencies encourages a pro-

gramming ethic that avoids unnecessary application-level synchronization and pro-

vides significant opportunities for optimising the size and frequency of messaging be-

tween distributed components.

9.2 A Critical Examination

The majority of the discussion within and around the previous chapters has focused

on the key strengths of Finesse. While we believe Finesse to be both refined and ex-

tremely useful, there are a number of deficiencies. The following subsections describe

those deficiencies and where possible, suggest future work that could address those

deficiencies.

9.2.1 Complexity

The Finesse approach addresses the intrinsically difficult problem of distributed pro-

gramming. The key difficulty in Finesse is in describing parallel behaviours and their

synchronization. While the declarative, event-relationship approach is relatively easy

151

to use where relationships are simple, complex relationships can introduce synchro-

nization requirements that are quite difficult to understand and debug. Traditional

semantic models like those used in CSP[59], Lotos[18] and other parallel specifi-

cation languages rely on an underlying sequential model to simplify reasoning and

reduce complexity. Middleware platforms like CORBA[98] rely on static and often

synchronous interaction models that hide much of the complexity associated with dis-

tributed interaction. We have demonstrated that the Finesse approach is more flexible

and powerful, but these come at the expense of complexity.

The argument against a more complex model is that programmers should be shielded

from the complexity as much as possible. Consider the example of our CSCW class-

room program: modules are used to hide the intrinsic complexity associated with the

interactions, but someone has to write, debug and understand those modules. We

counter that it is possible to provide that shield through use of a modular and/or object-

oriented language that allows a programmer to abstract over the complexity in most

cases, but also allows an experienced programmer to access the power and flexibility of

the underlying model when necessary. This argument is consistent with the assertions

of a number of researchers in language and programming technology, in particular,

the idea of Open Implementation introduced by Kiczales[70] and further promoted by

Dourish in his PhD thesis[36]. Open Implementation suggests that complexity can

be hidden by language mechanisms, but the underlying complexity should be accessi-

ble and modifyable in a semantically consistent manner. Doug Lea[78] also comes out

strongly in favour of this approach and backs his assertions with experience in building

distributed, object-oriented software. In Finesse, the complexity of distributed inter-

action can be hidden through its modules, and as shown in the examples of chapter 8,

those modules can be extended or modified to suit changing requirements.

9.2.2 Finesse Language Syntax

The Finesse language syntax has been a vehicle for demonstrating the power and flex-

ibility of the Finesse approach. It remains, however, a prototype language and as such

has a number of deficiencies. In particular, the Finesse language syntax is only par-

tially able to mask the complexity of distributed programming through its notion of

152

modules. We recognize this deficiency and suggest that future work on the Finesse ap-

proach should include both visual and object-oriented programming languages based

on the same underlying semantic model.

The use of guards rather than more traditional control constructs like if-then-

else is a questionable aspect of the language syntax. Guards can be more succinct

and have a more direct relationship with the semantic model but are often cumbersome,

especially where a guard is expressing the negation of a guard on an alternative event

path. Future versions of the syntax or alternative syntax might include explicit if-

then-else constructs, although guards could be retained for generality.

9.2.3 Quality of Service

A significant issue in the Finesse approach is highlighted by the streaming data exam-

ple from chapter 8: specifying quality of service constraints through the explicit intro-

duction of sequence numbers and dependent guards over individual events is cumber-

some and difficult to understand. The need to introduce explicit “aggregation” events

to keep track of lost packets, for example, is undesirable. While these issues can be

addressed to some extent by syntactic constructs, there are more fundamental issues.

For example, it is quite difficult to infer quality of service constraints deterministically

from the guards on an event-based specification, thus making it difficult to establish

communications of quality sufficient to meet the constraints at program instantiation

time. A higher-level semantic model for describing quality of service constraints is

necessary to support these features.

A related problem is that of “lip-sync”. Consider the stream example of chapter 8:

we do not specify the synchronization of the video and audio streams. For multimedia

applications, this synchronization is very important. While it is possible to achieve this

through guards over sequence numbers associated with events, it is again difficult to

infer the quality of service requirement from the event-level specification.

The issue of supporting quality of service constraints requires further research and

should be directed by the significant body of work in this area. A possible approach

would be to introduce language-level constructs that generate both a deterministic

quality requirement specification for use at program instantiation time and an event-

153

level specification that enforces the quality requirements at run-time.

9.2.4 Dynamic Behaviour Instantiation

The Finesse semantic model and language have no facility for the dynamic creation

of behaviour instances. An implication of this restriction is that parallel iteration is

not possible within the current model. The key difficulty is that the execution model

requires a static description of the possible behaviour of each participant and how this

is related to the behaviour of other participants. If multiple instances of a particular

behaviour are created at one participant, the relationship between those instances and

equivalent instances of behaviour at other participants needs to be established in a non-

deterministic manner. At this point, we have not specified a deterministic mechanism

for linking such parallel instances of behaviour across participants.

Given that Finesse is already a significant improvement in flexibility and power

over existing platforms, we do not see this as a fundamental deficiency. In many

senses, the restriction is appropriate in the semantic model because a single participant

implies a sequential order over the events occurring at that participant. The problem

can be circumvented to some extent by the ability to instantiate a program with any

number of participants filling a given role: multiple parallel instances of behaviour be-

come multiple participants in the program. In this case, introducing a new participant

implies a re-binding, and although not reported in this thesis, some initial specification

and prototyping of dynamic re-binding capability in Finesse has begun.

The underlying semantic problem is not insoluble, but any solution introduces an

additional level of complexity into the semantics. The semantic problem we describe

has been addressed to some extent in the calculus[94] through the ability to transfer

channels, and this will possibly influence future work on Finesse in this area. It is also

likely that the problem can be addressed through deterministic renaming of events in

parallel behaviour instances.

9.2.5 Security

Although not strictly a deficiency in the Finesse approach, our claim that Finesse is

useful for B2B interaction is only accurate if the implementation provides security

154

mechanisms sufficient for such interaction. There are two key aspects of security that

must be addressed, and a third that can usefully be addressed:

1. Participants in a program must be identified (authentication)

2. The actions of participants must be suitably controlled (authorization)

3. It should be possible to determine if an action of a participant was or was not

performed (non repudiation)

Interestingly, Finesse has characteristics that are useful in the establishment of

these mechanisms. The step of instantiating a program requires an unambiguous iden-

tification of the parties involved, thus secure authentication can be achieved by se-

curing this process with an appropriate mechanism. The specification of the program

to be executed by all parties at instantiation time and the acceptance of the partici-

pants fulfilling roles defines the permissible actions of participants, thereby defining

the necessary authorization. This mapping between the steps of program instantiation

and the necessary security controls makes the implementation of these controls rel-

atively straightforward. In particular, the fact that each copy of the runtime engine

operates autonomously and under the control of the participant allows a participant to

detect incorrect behaviour that might violate security controls. For interactions with

no single controlling authority like B2B, this is particularly important. Note, however,

that it is also necessary to ensure the integrity of the program instantiation process, or

in other words, ensuring that the process is not being circumvented in any way. This

is an issue for future research.

The implementation of non-repudiation is not yet a standard component in many

distributed software platforms. A typical implementation involves notifying a trusted

third party when any significant actions occur. Since all externally visible actions

are explicitly defined in a Finesse program, it would be straightforward to parse a

program and generate an augmented program that specifies reliable notification to a

non-repudiation role (a notary) for a set of nominated events. Instantiation of the

augmented program would then include agreement on the identity of the notary and

the runtime would automatically implement the necessary notifications.

155

We conclude that although security is not implemented or specified in this thesis,

the program instantiation and execution model lends itself naturally to the implemen-

tation of security controls.

9.3 Related Work

Finesse does not solve all distributed systems problems, but it provides a consistent

and implementable framework within which solutions to distributed systems problems

can be described and implemented in a flexible and re-usable fashion. This is perhaps

the most compelling argument in favour of Finesse: there is no other system that we

are aware of that provides such a powerful framework. That said, Finesse has many

similarities with existing work both in its detail and its high-level features. The fol-

lowing subsections compare aspects of Finesse with relevant existing work. We focus

initially on theoretical models and approaches that differ from Finesse, then discuss

the more concrete programming platforms.

9.3.1 Models for Parallel and Distributed Systems

The comparison of Finesse with existing semantic models for parallel and distributed

systems has been addressed to some extent in chapter 4. The key point to be taken

from that chapter is that while many models provide similar expressive power to Fi-

nesse, few are so directly implementable by a set of distributed, asyncronous, and

autonomous runtime engines.

The nearest theoretical model is that of event structures[134]. The two models

are quite similar in their description of an execution of a parallel program. Event

structures, however, have remained largely in the realm of mathematical theory and

semantic analysis and have rarely been used in the specification of implementable pro-

grams. Event structures, however, have been used as an underlying semantic model

for Petri nets[97]. Petri nets[99] provide a truly concurrent programming model based

on the notions of nodes, tokens, and places. As with Finesse, it is possible to distribute

the behaviour described by a Petri net over a set of distributed participants. The distri-

bution, however, is subject to synchronization constraints intrinsic to the model. Also,

156

while Petri nets have found favour in protocol specification, analysis and simulation,

it is difficult to map the Petri net semantics onto common interaction mechanisms as-

sociated with application components. This has meant, for example, that there are few

examples of coordination languages using the Petri net semantic model.

A number of other models for parallel and distributed systems based on interleaved

concurrency and sequential trace semantics are popular amongst researchers. This

includes CSP[59], CCS[93], Lotos[18], and the calculus[94]. Their expressiveness

in describing parallel applications is similar to Finesse . The calculus in particular is

able to describe the transfer of “channels” and thus allows the dynamic instantiation of

parallel behaviour, a deficiency in Finesse. The key advantage of the Finesse semantic

model is its native ability to describe true parallism and hence the conflicts that can

occur in a distributed system. For example, it is difficult to capture the potential conflict

that exists when mutually exclusive parallel events are executable in an interleaved

concurrency model: one event can simply be chosen making the other impossible. In

a distributed environment, this choice requires synchronization because the events can

truly occur in parallel and the Finesse model makes this quite clear. Over and above

this theoretical advantage, the mapping of the Finesse semantic model directly onto a

set of distributed, asynchronous runtime engines is a significant result and one that is

made easier and clearer by the nature of the model.

9.3.2 Mobile Agent Technology

While one could consider mobile agent technology[28] to be a model for parallel and

distributed systems, we address it separately because it is perhaps closest to providing

an equivalent distributed and implementable model to Finesse. Mobile agent technol-

ogy is generally characterized by the use of a mobile “agent” that includes code, pro-

gram state and program data. The agent migrates between participants in a distributed

program as defined by the program and the current state of the agent, performing ac-

tions against each participant when co-located and updating its program state and data

to reflect those actions. By definition, a single agent can only execute a single threaded

process or one with only local parallelism. Most agent languages and systems, how-

ever, offer the ability to split or create child or clone agents along some synchronization

157

primitives to coordinate their actions.

The expressive power of mobile agent technology is similar to that provided by

Finesse. The issue of which model better handles the complexity of truly distributed

software is open to argument. The key advantages of Finesse over mobile agent tech-

nology can be summarized as follows:

Finesse uses a declarative programming model, allowing significant opportuni-

ties for optimization. By comparison, the imperative model of agent technology

leaves little scope for optimization. The need to transfer the whole program state

and data with each migration of the agent can also be a particularly inefficient

consumer of bandwidth;

we are not aware of any models for agent technology that explicitly distinguish

roles and allow for multiple participants to fulfill a role. This makes it consid-

erably more difficult to implement, for example, process group abstractions and

other mechanisms for reliable distributed computing;

the explicit maintenance of a view of program state for each participant in Fi-

nesse increases the autonomy of participants and is particularly useful for mon-

itoring and securing B2B interactions;

the ability to access local program state at any time in Finesse also makes de-

bugging programs considerably easier;

the model of executing methods against the mobile program state is good for

object-oriented programs, but does not match well with streaming data or other

interaction models requiring bulk data transfer.

the transfer of the complete program, state, and data to each participant poses

some unique security risks for agent technology[28, 65]. In particular, it is im-

possible to prevent and difficult to detect participant modifications to the agent

state that violate authorization constraints.

The key advantage of mobile agent technology over Finesse is that the base be-

havioural model builds on existing object-oriented programming models, that is, exe-

cution of methods on an encapsulated object (the agent). This is well understood by

158

most programmers and makes agent technology accessible from within existing pro-

gramming frameworks. We conclude that while this technology provides a useful and

more approachable technique for distributed programming, the limitations described

above make the Finesse approach more flexible and powerful in many circumstances.

Note that these comments are not directed at the agent communication languages

associated with intelligent agents[88, 89]. It is also worth noting that agent communi-

cation languages, and in particular the KQML language[88], could potentially use the

semantic model described in chapter 4 as a basis for execution and the definition of

new performatives for interaction between agents.

9.3.3 Coordination and Architecture Description Languages

The Finesse language is most closely related to a number of existing coordination

languages and architecture description languages. As discussed in chapter 3, the coor-

dination community tends to be divided between tuple space models and connection-

oriented models. The tuple space models are derived from the Linda[23] prototype,

and provide coordination through a set of well defined operations on a logically shared

data space. While they provide a basis for interconnection of components, the pre-

sentation of that functionality is quite different from Finesse. The connection-oriented

models are usually based on a language for describing the interconnection of compo-

nents and are quite similar to Finesse in the model and features provided. Quite closely

related again are the architecture description languages. These languages are intended

to model the high-level architecture of component-based systems, so provide semantic

constructs for describing the interconnection of components.

The earliest attempts at distinguishing coordination from computation were based

on Linda[23] and a number of variants are still in active use, indicating the power of

the shared tuple space approach. These systems have the advantage of a simple, yet

powerful model of communication. Finesse lacks this simplicity but has a number of

advantages, in particular the ability to abstract over communication in a way that can

be optimized, and the ability to capture coordination protocols and build increasingly

high-level abstractions of that coordination. The shared tuple space models suffer

in distributed systems because of the implicit synchronization required to maintain a

159

logically consistent tuple space.

More recently, a number of coordination languages have been based on the idea

of building a network of connections between ports and/or interfaces, as is done by

ConCoord[60] and Manifold[4]. ConCoord in particular has powerful abstraction

capabilities and language independence. The primary difference between these lan-

guages and Finesse is that Finesse does not use explicit connections between inter-

faces, with the abstracted causal and parameter relationships allowing the optimiza-

tion of messaging and message contents. Neither the connection based languages or

the shared tuple-space languages support real-time constraints to the extent supported

by Finesse.

Architecture description languages are typically intended to describe the high level

structure of a software system for modelling and analysis purposes. They provide

similar abstractions and expressive power to the Finesse language syntax, but do not

offer an underlying distributed execution model or a direct mapping to such a model.

Some key examples include Darwin[84] which uses a semantic model based on

calculus, Wright[101] which is based on CSP, and Rapide[80]. Semantically, Finesse

is most similar to Rapide, whose semantics is based on posets (partially ordered sets

of events). Rapide is intended as a simulation language for software engineering. It is

event-based, with a true concurrency model based on causality, and uses event patterns

for abstraction and synchronization. Rapide also has extensive support for real-time

constraints. Finesse differs most from Rapide in the way abstraction is handled and

in its data model, since Rapide has a fixed, structured data model. Work derived from

Darwin[74] is now used to generate implementation code making it similar in high-

level functionality, but without the distribution semantics.

9.3.4 Middleware Platforms

Section 3.6 of chapter 3 provides an overview of both research and commercial mid-

dleware platforms intended to provide a basis for constructing distributed systems. As

suggested in that discussion, middleware platforms suffer from the static nature of their

interaction mechanisms: it is not generally possible to define new, higher-level inter-

action protocols, and the systems focus on building tightly-coupled software where

160

all components are known at compile-time. This static property has led to the recent

popularity of EAI systems.

9.3.5 EAI Platforms

EAI platforms have grown from a need to integrate enterprise-level components in

large commercial organizations. While they are based on relatively sound distributed

systems principles, the primary force behind their development was large consulting

organizations faced with the difficulty of building such integrations. There are few, if

any, research prototypes offering the features of an EAI platform. Some key competi-

tors in the EAI marketplace include Vitria with BusinessWare, Tibco with ActiveEn-

terprise, IBM with MQSeries Integrator, and BEA with their Weblogic Integrator. The

EAI platforms have remarkably similar architectures:

application components publish events or requests

a broker accepts each event or request

a program or programs in the broker performs one or more actions as a result:

this could be as simple as forwarding the event to another application compo-

nent, or could involve the generation of a set of new events based on a set of

event triggers and forwarding these to other application components

application components also perform actions as a result of receiving events or

requests

The broker programs are often graphically defined or scripted and can include data

transformation operations. Most platforms can also use a workflow engine to imple-

ment business processes that require monitoring and human interaction. Messaging in

these platforms is typically available in both reliable and unreliable variants. Many of

the platforms are based on a transactional messaging infrastructure.

These toolkits offer many features and tools that are not matched by Finesse, but

the centralized, broker-based architecture is both a potential performance bottleneck

and a single point of failure. There is considerable potential for using Finesse as a

distributed broker in these platforms. The interface descriptions and broker program

161

semantics are also quite limited in many cases. For example, Vitria’s BusinessWare

product supports only publish/subscribe interaction. These systems could benefit sig-

nificantly from the well-structured, well-defined and extensible approach used in Fi-

nesse . We conclude by stating that EAI platforms use a sound architecture and provide

good tools, but suffer from ad-hoc or inflexible semantic models for interaction.

9.3.6 B2B Platforms

There are a number of existing systems designed to support the development of B2B

systems. These include initiatives like RosettaNet, Hewlett Packard’s E-speak infras-

tructure, and Microsoft’s BizTalk server. These systems, however, focus on the defini-

tion of business documents and the point-to-point transfer of those documents. There

is little or no support for the higher-level definition of the roles and responsibilities

captured in the business contract. These are primarily left to local programming.

The idea of implementing business contracts in a distributed system has been ex-

plored by a number of researchers, including [95, 54]. In both cases, the work focuses

on the higher-level issues of establishing contracts and they assume the presence of an

underlying execution engine for processes used for contract enactment. The CrossFlow

work in particular uses existing workflow technology and is dependent on a centralized

engine or synchronized distributed engines. The Finesse approach avoids the need for

a centralized engine or synchronized distributed engines.

9.4 Concluding Remarks

This chapter has presented a critical examination of Finesse with the goal of high-

lighting its strengths and weaknesses, and showing how Finesse compares with the

capabilities of existing systems. From this discussion, we assert that Finesse does sat-

isfy the needs of distributed systems defined by the initial assertions of the thesis, and

provides a number of unique advantages in the construction of distributed systems.

162

Chapter 10

Conclusion

This thesis has presented Finesse as a new approach to the construction of distributed

systems. The approach draws together both theory and practice from software ar-

chitecture, distributed systems, parallel software specification languages, coordination

languages, and middleware technology. While individual pieces of the Finesse are

significant in themselves, the major contribution is the totality of the approach.

We began with an architectural model for the interconnection of distributed com-

ponents. This model separates interface from interaction and promotes the interaction

specification to first-class status. Or in other words, we support the notion of truly

programmable middleware. We then added a behavioural model based on declarative,

causal relationships between events, and defined an executable semantic model that al-

lows the execution of a program to be distributed amongst a set of autonomous partic-

ipants. The distributed execution of the program proceeds in an entirely asynchronous

manner, with no synchronization except that explicitly specified in the program. We

defined a language syntax that links the architectural and behavioural models by spec-

ifying the externally visible behaviour of application components (their interfaces)

using events, then linking those behaviours through an interactions specification. We

also described the design of a prototype implementation of the runtime system, thus

showing the implementability of Finesse . We then demonstrated the power and flexi-

bility of Finesse through a set of examples spanning a variety of domains in distributed

systems programming.

In the discussion of chapter 9, we showed that Finesse capably meets the goals

163

for distributed systems programming set down in the introductory comments. Our

critique of the approach identifies shortcomings in Finesse and suggests how they can

be addressed by future work. We also presented a comparison between Finesse and

existing work, demonstrating in the process that the independent pieces of Finesse

are useful innovations in themselves. In isolation, the key innovations of the Finesse

approach can be summarized as follows:

the specification of behaviour using a declarative model based on causal rela-

tionships;

the definition of an executable semantic model for that behaviour that allows a

program to be distributed amongst a set autonomous participants communicating

only through asynchonous messaging;

the definition of a simple but flexible and powerful programming language syn-

tax for creating programs using the declarative model;

the presentation of a design and prototype implementation of a distributed run-

time engine that can execute programs using the model.

We emphasize, however, that although these innovations are significant, the totality of

the approach is the key contribution of the thesis.

This thesis is submitted with confidence that the Finesse system is a novel, prag-

matic and powerful approach to the construction of distributed systems, and will pro-

vide a basis for both ongoing research and commercial implementation.

164

Bibliography

[1] R. Allen and D. Garlan. Formalizing architectural connection. In Proceedings

16th International Conference on Software Engineering. IEEE, May 1994.

[2] J. Andrade, M. Carges, T. Dwyer, and S. Felts. The Tuxedo System: Software

for Constructing and Managing Distributed Business Applications. Addison

Wesley, 1996.

[3] J. Andreoli, S. Freeman, and R. Pareschi. The coordination language facility.

Theory and Practice Of Object Systems, 2(2):77–94, 1996.

[4] F. Arbab. The IWIM model for coordination of concurrent activities. In Coor-

dination Languages and Models, number 1061 in LNCS. Springer, 1996.

[5] F. Arbab. The influence of coordination on program structure. In Proceedings

of the Thirtieth Annual Hawaii International Conference on System Sciences:

Software Technology and Architecture, 1997.

[6] D. Arnold, A. Bond, M. Chilvers, and R. Taylor. Hector: Distributed objects in

python. In Proceedings of the 4th International Python Conference, Livermore,

California, June 1996.

[7] H. Bal, M. Kaashoek, and A. Tanenbaum. Orca: A language for parallel pro-

gramming of distributed systems. IEEE Transactions on Software Engineering,

18(3), Mar. 1992.

[8] B. Berliner. CVS II: Parallelizing software development. In Proceedings of the

USENIX Winter 1990 Technical Conference. USENIX Association, 1990.

165

[9] A. Berry and S. Kaplan. Open, distributed coordination with finesse. In ACM

Symposium on Applied Computing, Atlanta, Feb. 1998.

[10] A. Berry and S. Kaplan. A distributed asynchronous execution semantics for

programming the middleware machine. In Fifth International Symposium on

Autonomous Decentralized Systems, Dallas, Texas, USA, Mar. 2001. IEEE.

[11] A. Berry and K. Raymond. The A1 architecture model. In Open Distributed

Processing: Experiences with distributed environments. IFIP, Chapman and

Hall, Feb. 1995.

[12] K. Birman. A response to Cheriton and Skeen’s criticism of causal and totally

ordered communication. Operating Systems Review, 28(1):11–20, Jan. 1994.

[13] K. Birman and R. Cooper. The ISIS project: Real experience with a fault toler-

ant programming system. Operating Systems Review, Apr. 1991.

[14] K. P. Birman. Maintaining consistency in distributed systems. Technical report,

Cornell University, Nov. 1991.

[15] A. Birrel and D. Nelson. Implementing remote procedure calls. ACM Transac-

tions on Computing Systems, 2(1), Feb. 1984.

[16] A. Black, N. Hutchison, E. Jul, and H. Levy. Object structure in the Emerald

system. In Proceedings of Object Oriented Programming Systems, Languages

and Applications, volume 21 of SIGPLAN Notices, Nov. 1986.

[17] G. Blair and T. Rodden. The challenges of CSCW for Open Distributed Pro-

cessing. In Open Distributed Processing, II. IFIP, North Holland, 1993.

[18] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language

LOTOS. Computer Networks and ISDN Systems, 14(1):25–59, 1987.

[19] G. Booch. Object Oriented Design With Applications. Benjamin/Cummings,

Redwood City, California, 1991.

[20] W. Brookes, J. Indulska, A. Berry, K. Raymond, and B. A. A type model

supporting interoperability in open distributed systems. In Proceedings of the

166

Telecommunications Information Networking Architecture Conference, Mel-

bourne, Feb. 1995.

[21] N. Carriero, D. Gelernter, and S. Hupfer. Collaborative applications experience

with the Bauhaus coordination language. In Proceedings of the Thirtieth Annual

Hawaii International Conference on System Sciences: Software Technology and

Architecture, 1997.

[22] N. Carriero, D. Gelernter, and L. Zuck. Bahaus linda. In Object-based Models

and Languages for Concurrent Systems, number 924 in LNCS, pages 66–76.

Springer, July 1994.

[23] N. Carriero and G. Gelernter. Linda in context. Communications of the ACM,

32(4), Apr. 1989.

[24] S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems. Mc-

Graw Hill, 1984.

[25] B. Charron-Bost, C. Delporte-Gallet, and H. Fauconnier. Local and temporal

predicates in distributed systems. ACM Transactions on Programming Lan-

guages and Systems, 17(1), 1995.

[26] D. Cheriton. The V kernel: A software base for distributed systems. IEEE

Software, Apr. 1984.

[27] D. R. Cheriton and D. Skeen. Understanding the limitations of causally and

totally ordered communications. Operating Systems Review, 27(5):44–57, De-

cember 1993. Proceedings of Fourteenth ACM Symposium on Operating Sys-

tems Principles.

[28] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G. Tsudik. Itinerant

Agents for Mobile Computing. IEEE Personal Communications, 2(5):34–49,

1995.

[29] D. Chess, C. Harrison, and A. Kershenbaum. Mobile Agents: Are They a Good

Idea? Technical Report RC 19887, IBM, Yorktown Heights, New York, 1994.

167

[30] P. K. Chrysanthis and K. Ramamritham. Acta: A framework for specifying

and reasoning about transaction structure and behavior. In Proceedings of the

1990 ACM SIGMOD International Conference on Management of Data, pages

194–203. ACM, May 1990.

[31] P. Ciancarini and C. Hankin, editors. Coordination Languages and Models,

volume 1061 of Lecture Notes in Computer Science. Springer, 1996.

[32] K. Clark and S. Gregory. PARLOG: Parallel programming in logic. ACM Trans-

actions on Programming Languages and Systems, 8(1), Jan. 1986.

[33] M. Cortes and P. Mishra. DWCPL: A programming language for describing

collaboration. In ACM 1996 Conference on Computer Supported Cooperative

Work, Nov. 1996.

[34] E. Denti, A. Natali, and A. Omicini. On the expressive power of a language for

programming coordination. In Symposium on Applied Computing. ACM, 1998.

[35] P. Dourish. A divergence-based model of synchrony and distribution in col-

laborative systems. Technical report, Rank Xerox Research Centre, Cambridge

Laboratory, 1994.

[36] P. Dourish. Open Implementation and Flexibility in CSCW Toolkits. PhD thesis,

Department of Computer Science, University College London, 1996.

[37] H. Edelstein. Unraveling client-server architectures. DBMS, 7(5), may 1994.

[38] K. Edwards. Session management for collaborative applications. In Proceed-

ings of the ACM 1994 Conference on Computer Supported Cooperative Work,

Oct. 1994.

[39] M. Fazzolare, B. G. Humm, and R. D. Ranson. Advanced transaction seman-

tics for TINA. In Proceedings of the Fourth Telecommunication Information

Networking Architecture Workshop, pages 47–57, Sept. 1994.

[40] C. Fidge. Logical time in distributed computing systems. IEEE Computer,

pages 28–33, Aug. 1991.

168

[41] G. Fitzpatrick, S. Kaplan, and T. Mansfield. Physical spaces, virtual places

and social worlds: A study of work in the virtual. In Proceedings of ACM 1996

Conference on Computer Supported Cooperative Work, pages 334–343, Boston,

MA, 1996. ACM Press.

[42] G. Fitzpatrick, W. J. Tolone, and S. M. Kaplan. Work, locales and distributed

social wOrlds. In H. Marmolin, Y. Sundblad, and K. Schmidt, editors, Proceed-

ings of the Fourth European Conference on Computer-Supported Cooperative

Work, pages 1–16. Kluwer Academic Publishers, 1995.

[43] R. Frederick. Experiences with software real time video compression. Technical

report, Xerox PARC, 1992.

[44] R. Furuta and P. D. Stotts. Interpreted collaboration protocols and their use

in groupware prototyping. In Proceedings of the ACM 1994 Conference on

Computer Supported Cooperative Work, Oct. 1994.

[45] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting style in architectural design

issues. In Proceedings of SIGSOFT’94: Foundations of Software Engineering.

ACM Press, Dec. 1994.

[46] D. Gelernter. Generative communications in linda. ACM Transactions on Pro-

gramming Languages and Systems, pages 80–112, Jan. 1985.

[47] D. Georgabopoulos, M. Hornick, and P. Krychniak. An environment for speci-

fication and managment of extended transactions in DOMS. In Proceedings of

the 3rd International Workshop on Interoperable Multidatabase Systems, Apr.

1993.

[48] D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow man-

agement: From process modelling to workflow automation infrastructure. Dis-

tributed and Parallel Databases, 1995.

[49] D. Gifford. Weighted voting for replicated data. In Proceedings th Symposium

on Operating System Principles, pages 150–161, Pacific Grove, 1979. ACM.

169

[50] L. Gilman and R. Schreiber. Distributed computing with IBMMQSeries. Wiley,

1996.

[51] J. Gray. Operating Systems: An Advanced Course. Lecture Notes in Computer

Science. Springer-Verlag, 1978.

[52] S. Greenberg and D. Marwood. Real time groupware as a distributed system:

Concurrency control and its effect on the interface. In Proceedings of the ACM

1994 Conference on Computer Supported Cooperative Work. ACM Press, Oct.

1994.

[53] C. Greenhalgh and S. Benford. MASSIVE: a distributed virtual reality system

incorporating spatial trading. In Proceedings of the 15th International Confer-

ence on Distributed Computing Systems, May 1995.

[54] P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig. CrossFlow: Cross-

organizational workflow management in dynamic virtual enterprises. Interna-

tional Journal of Computer Systems Science and Engineering, 15(5), 2000.

[55] D. Harel. Statecharts: A visual formalism for complex systems. Science of

Computer Programming, 8, 1987.

[56] S. Harrison and P. Dourish. Re-place-ing space: The roles of place and space

in collaborative systems. In M. S. Ackerman, editor, Proceedings of ACM 1996

Conference on Computer Supported Cooperative Work, pages 67–76, Boston

MA, Nov 1996. ACM Press.

[57] J. Heidemann, T. Page, R. Guy, and G. Popek. Primarily disconnected opera-

tion: Experience with Ficus. In The 2nd International Workshop on Mangement

of Replicated Data, nov 1992.

[58] R. Helm, I. Holland, and D. Gangopadhyay. Contracts: Specifying behavioural

compositions in object-oriented systems. SIGPLAN Notices, 25(10):169–180,

1990.

[59] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

170

[60] A. A. Holzbacher. A software environment for concurrent coordinated pro-

gramming. In Coordination Languages and Models, volume 1061 of LNCS.

Springer, 1996.

[61] J. Howard. An overview of the Andrew File System. In USENIX Winter Tech-

nical Conference, 1988.

[62] N. Islam and R. H. Campbell. Techniques for global optimization of message

passing communication on unreliable networks. In Proceedings of the 15th

International Conference on Distributed Computing Systems, May 1995.

[63] ISO/IEC 10746-1 10756-2 10746-3 10746-4 Basic Reference Model for Open

Distributed Processing.

[64] V. Jacobson and S. McCanne. Vat—X11-based audio teleconferencing tool.

Unix man pages, Lawrence Berkeley Laboratory, 1993.

[65] W. Jansen. Countermeasures for mobile agent security. Technical report, Na-

tional Institute of Standards and Technology, Gaithersburg, MD, USA, 1999.

[66] B. Janssen and M. Spreitzer. ILU: Inter-language unification via object modules.

In OOPSLA ’94 Workshop on Multi-Language Object Models, 1994.

[67] S. Kaplan, G. Fitzpatrick, T. Mansfield, and W. J. Tolone. MUDdling through.

In Proceedings of the Thirtieth Annual Hawaii International Conference on Sys-

tem Sciences: Information Systems—Collaboration Systems and Technology,

1997.

[68] S. M. Kaplan, G. Fitzpatrick, and T. Mansfield. Orbit and support for pervasive

collaboration. In J. Grundy, editor, Proceedings of the OzCHI’96 Workshop

on the Next Generation of CSCW Systems, pages 10–14. Dept. of Computer

Science, The University of Waikato, New Zealand, 1996.

[69] S. M. Kaplan, W. J. Tolone, D. P. Bogia, and C. Bignoli. Flexible, active sup-

port for collaborative work with ConversationBuilder. In Proceedings of the

Conference on Computer-Supported Cooperative Work, pages 378–385, 1992.

171

[70] G. Kiczales. Beyond the black box: Open implementation. IEEE Software,

pages 8–11, Jan. 1996.

[71] T. Kielmann. Designing a coordination model for open systems. In Coor-

dination Languages and Models, volume 1061 of Lecture Notes in Computer

Science. Springer, 1996.

[72] K. Klockner, P. Mambrey, M. Sohlenkamp, W. Prinz, and L. Fuchs. POLITeam:

Bridging the gap between bonn and berlin for and with the users. In Proceedings

of the Fourth European Conference on Computer-Supported Cooperative Work,

pages 17–31. Kluwer, Sept. 1995.

[73] Q. Konq and A. Berry. A general resource discovery system for Open Dis-

tributed Processing. In Open Distributed Processing: Experiences with dis-

tributed environments. IFIP, Chapman and Hall, Feb. 1995.

[74] J. Kramer and J. Magee. Exposing the skeleton in the coordination closet. In

Coordination Languages and Models, number 1282 in Lecture Notes in Com-

puter Science, pages 18–31. Springer, Sept. 1997.

[75] M. I. Kramer. Business events: Publish and subscribe technology enables

automation through application integration. Distributed Computing Monitor,

10(11):3–27, Nov. 1995.

[76] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawhat. Providing high availability

using lazy replication. ACM Transactions on Computer Systems, 10(4):360–

391, Nov. 92.

[77] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, pages 558–565, July 1978.

[78] D. Lea. Design for open systems in java. In Coordination Languages and

Models, number 1282 in Lecture notes in computer science. Springer, 1997.

[79] B. Liskov. Distributed programming in Argus. Communications of the ACM,

31(3), Mar. 1988.

172

[80] D. C. Luckham and J. Vera. An event based architecture definition language.

IEEE Transactions on Software Engineering, Sept. 1995.

[81] M. Lutz. Programming Python. O’Reilly and Associates, 1996.

[82] S. Maffeis. The electra approach to object oriented distributed programming.

Technical Report IFI TR 92.23, Institut fur Informatik Der Universitat Zurich,

Nov. 1992.

[83] S. Maffeis. iBus: The java intranet software bus. Technical report, SoftWired

AG, Zurich, Switzerland, 1997.

[84] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed soft-

ware architectures. In Proceedings of the 5th European Software Engineering

Conference, Sept., 1995.

[85] D. Marshak. Lotus Notes: A platform for developing workgroup applications.

Patricia Seybold’s Office Computing Report, July 1990.

[86] D. S. Marshak. ANSA: A model for distributed computing. Network Monitor,

6(11), Nov. 1991.

[87] A. Mathur, R. Hall, J. Farnam, A. Prakesh, and C. Rasmussen. The pub-

lish/subscribe paradigm for scalable group collaboration systems. CSE-TR 270-

95, University of Michigan, Nov. 1995.

[88] J. Mayfield, Y. Labrou, and T. Finin. Evaluation of KQML as an Agent Com-

munication Language. In Proceedings on the IJCAI Workshop on Intelligent

Agents II : Agent Theories, Architectures, and Languages, volume 1037, pages

347–360. Springer-Verlag, 1996.

[89] F. G. McCabe and K. L. Clark. April – agent process interaction language. In

Intelligent Agents: Theories, Architectures, and Languages (LNAI volume 890),

pages 324–340. Springer-Verlag, 1995.

[90] S. McCanne and V. Jacobson. Vic: A flexible framework for packet video. In

ACM Multimedia, nov 1995.

173

[91] R. Medina-Mora, T. Winograd, R. Flores, and F. Flores. The action workflow

approach to workflow management technology. In Proceedings of the Confer-

ence on Computer-Supported Cooperative Work, pages 281–288, 1992.

[92] Microsoft Corporation. Microsoft Networks SMB File Sharing Protocol. Also

known as CIFS.

[93] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[94] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I and

II. Journal of Information and Computation, 100, 1992.

[95] Z. Milosevic, A. Berry, A. Bond, and K. Raymond. Supporting business con-

tracts in open distributed systems. In Proceedings of the Workshop on Services

in Distributed and Networked Environments. IEEE, 1995.

[96] NCSA. Habanero. http://www.ncsa.uiuc.edu/SDG/Software/Habanero/.

[97] M. Neilsen, G. Plotkin, and W. G. Petri nets, event structures and domains. In

Semantics of Concurrent Computation, volume 70. Springer-Verlag, 1979.

[98] The common object request broker: Architecture and specification. The Object

Management Group, 1995. Revision 2.0.

[99] Peterson. Petri net theory and the modeling of systems. Prentice-Hall, 1981.

[100] L. L. Peterson. Preserving context information in an IPC abstraction. In

Proceedings of the 6th symposium on Reliability in Distributed Software and

Database Systems, pages 22–31, Mar. 1987.

[101] A. R. and D. Garlan. Formal connectors. Technical Report CMU-CS-94-115,

Carnegie Mellon University, Mar. 1994.

[102] A. Rakotonirainy, A. Berry, S. Crawley, and Z. Milosevic. Describing open

distributed systems: A foundation. The Computer Journal, 40(8), 1997.

[103] A. Rakotonirainy, A. Berry, S. Crawley, and Z. Milosevic. Describing open dis-

tributed systems: A foundation. In Proceedings of the Thirtieth Annual Hawaii

174

International Conference on System Sciences: Software Technology and Archi-

tecture, 1997.

[104] Rational. The unified modelling language. http://www.rational.com/uml/.

[105] K. Raymond. Reference Model of Open Distributed Processing (RM-ODP):

Introduction. In Open Distributed Processing: Experiences with distributed

environments. IFIP, Chapman and Hall, Feb. 1995.

[106] M. Rice and S. B. Seidman. A formal model for module interconnection lan-

guages. IEEE Transactions on Software Engineering, 20(1):88–101, Jan. 1994.

[107] D. Rogerson. Inside DCOM. Microsoft Press, 1997.

[108] M. Roseman and S. Greenberg. GROUPKIT a Groupware Toolkit for Building

Real-Time Conferencing Applications. In Proceedings of the Conference on

Computer-Supported Cooperative Work, pages 43–50, 1992.

[109] M. Roseman and S. Greenberg. TeamRooms: Network places for collabora-

tion. In ACM 1996 Conference on Computer Supported Cooperative Work,

Nov. 1996.

[110] W. Rosenbury, D. Kenney, and G. Fisher. Understanding DCE. O’Reilly and

Associates, Inc., September 1992.

[111] A. Rowstron and A. Wood. Bonita: A set of tuple space primitives for dis-

tributed coordination. In Proceedings of the Thirtieth Annual Hawaii Interna-

tional Conference on System Sciences: Software Technology and Architecture,

1997.

[112] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-

Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, New Jersey,

1991.

[113] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and

implementataion of the Sun network filesystem. In Proceedings of the summer

1985 USENIX Conference, jun 1985.

175

[114] M. Satyanarayanan, J. Kistlyer, P. Kumar, M. Okasiki, E. Siegel, and D. Steere.

Coda: A highly available file system for a distributed workstation environment.

IEEE Transactions on Computers, 39(4), Apr. 1990.

[115] C. Schuckmann, L. Kirchner, J. Schummer, and J. M. Haake. Designing object-

oriented synchronous groupware with COAST. In ACM 1996 Conference on

Computer Supported Cooperative Work, Nov. 1996.

[116] M. Shaw. Patterns for software architectures. In Proceedings of First Annual

Conference on the Pattern Languages of Programming, Aug. 1994.

[117] M. Shaw. Procedure calls are the assembly language of software interconnec-

tion: Connectors deserve first-class status. Technical Report CMU-CS-94-107,

Software Engineering Institute, Carnegie Mellon Univerity, Jan. 1994.

[118] M. Shaw and D. Garlan. Software Architecture: Perspectives on an emerging

discipline. Prentice Hall, 1996.

[119] M. Sherman. Architecture of the encina distributed transaction processing fam-

ily. In ACM SIGMOD Conference, 1993.

[120] M. Sohlenkamp and G. Chwelos. Integrating communication, cooperation, and

awareness: the DIVA virtual office environment. In Proceedings ACM Confer-

ence on Computer Supported Cooperative Work, pages 331–343, Chapel Hill,

NC, 1994. ACM Press.

[121] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1989.

[122] A. Strauss. Continual Permutations of Action. Aldine De Gruyter, New York,

1993.

[123] Sun Microsystems. The Javabeans 1.01 Specification.

http://java.sun.com/products/javabeans/docs/spec.html.

[124] Sun Microsystems. Network Programming Guide, Mar. 1990. Part number:

800-3850-10.

176

[125] V. Sunderam. A framework for parallel distributed computing. Concurrency:

Practice and Experience, 2(4), 1990.

[126] C. Szyperski. Component Systems–Beyond Object-oriented Programming. Ad-

dison Wesley, 1998.

[127] A. Tanenbaum, R. van Renesse, H. van Staveren, G. Sharp, S. Mullender,

A. Jansen, and G. van Rossum. Experiences with the Amoeba distributed oper-

ating system. Communications of the ACM, 33(2), Dec. 1990.

[128] D. Terry, M. Theimer, K. Peterson, A. Demers, M. Spreitzer, and C. Hauser.

Managing update conflicts in Bayou, a weakly connected replicated storage

system. In Proceedings of the 15th ACM Symposium on Operating Systems

Principles, dec 1995.

[129] W. J. Tolone, S. M. Kaplan, and G. Fitzpatrick. Specifying dynamic support for

collaborative work within wOrlds. In Proceedings ACM Conference on Orga-

nizational Computing Systems (COOCS’95), pages 55–65, Milpitas, CA, 1995.

[130] R. van Renesse, K. P. Birman, and S. Maffeis. Horus, a flexible group commu-

nication system. Communications of the ACM, Apr. 1996.

[131] J. Waldo. The Jini architecture for network-centric computing. Communications

of the ACM, 1999.

[132] M. Wilkes and R. Needham. The Cambridge model distributed system. Oper-

ating Systems Review, 14(1), 1980.

[133] T. Winograd and F. Flores. Understanding Computers and Cognition: A New

Foundation for Design. Addison Wesley, Reading, 1986.

[134] G. Winskel. An introduction to event structures. In Linear time, branching time

and partial order in logics and models for concurrency, number 354 in LNCS.

Springer-Verlag, 1988.

[135] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The

Knowledge Engineering Review, 10(2):115–152, 1995.

177

[136] X/Open. Distributed Transaction Processing: Reference Model. X/Open Com-

pany Ltd, 1991.

178

Appendix A

Finesse Language Syntax

The following text presents a BNF specification of the syntax of the Finesse language

described in chapter 5. The syntax has been generated from a parser definition us-

ing the JavaCC suite of parsing tools from Sun. All complete examples presented in

this thesis have been successfully parsed by the prototype parser that generated this

specification.

BINDING ::= "Binding" <NAME> "{" BINDDEF "}" <EOF>
BINDDEF ::= IMPORTS ROLES INTERACTIONS
IMPORTS ::= ("Import" <NAME> ("," <NAME>)* ";")*
ROLES ::= "Roles" "{" ((CARD)? <NAME>

(NAMELIST)?
"{" (ROLEBEHAVIOUR)? "}")+ "}"

CARD ::= "[" <CARDVAL> COMPARE <INTEGER>
((<AND> | <OR> | <XOR>)

<CARDVAL> COMPARE <INTEGER>)? "]"
ROLEBEHAVIOUR ::= ROLEACTION (INFIX ROLEACTION)*

ROLEACTION ::= (GUARD)?
(EVENTSPEC

| <NAME> "{" ROLEBEHAVIOUR "}"
| IMPORTEDACTION)

| LOOPACTION
| "{" ROLEBEHAVIOUR "}"

IMPORTEDACTION ::= <DOTNAME> (SUBSLIST)?
EVENTSPEC ::= <EVENT> (PARSET (PARMREL)?)?

PARSET ::= "(" (PARSPEC ("," PARSPEC)*)? ")"
PARSPEC ::= <NAME> (":" <NAME>)?

LOOPACTION ::= (<WHILE> GUARD "{" ROLEBEHAVIOUR "}")
| (<LOOP> "{" ROLEBEHAVIOUR "}")

NAMELIST ::= "(" <NAME> ("," <NAME>)* ")"

179

SUBSLIST ::= "(" ((VALUE | PARSET)
("," (VALUE | PARSET))*)? ")"

INTERACTIONS ::= "Interactions" "{" INTERACTBEHAV "}"
INTERACTBEHAV ::= (INTERSPEC (INFIX INTERSPEC)*)?

INTERSPEC ::= (GUARD)? (INTERSPECACTION | BINDSPEC)
BINDSPEC ::= <NAME> "(" (BOUNDNAME | BOUNDNAMELIST)

("," (BOUNDNAME | BOUNDNAMELIST))* ")"
BOUNDNAMELIST ::= "(" BOUNDNAME ("," BOUNDNAME)* ")"

INTERSPECACTION ::= (<DOTNAME> (PARMREL)?)
| "{" INTERACTBEHAV "}"

PARMREL ::= "{" ((ASSIGN ("," ASSIGN)*)
| NAMEEQUIV) "}"

ASSIGN ::= <NAME> "=" VALUE
PREVSPEC ::= <PREVPARM> | <DOTNAME>

NAMEEQUIV ::= "*=" (<PREV> | <DOTNAME>)
GUARD ::= "[" GUARDEXPR "]"

GUARDEXPR ::= GUARDVALUE
((<AND> | <OR> | <XOR>)

GUARDVALUE)*
GUARDVALUE ::= (<NOT>)?

("(" GUARDEXPR ")"
| (VALUE (COMPARE VALUE)?)
| CARDGUARD)

BUILTINGUARD ::= TIMEGUARD | REPLYGUARD | OCCURGUARD
TIMEGUARD ::= (<TIMELESS> | <TIMEMORE>)

"(" EVENTREF "," VALUE ")"
REPLYGUARD ::= <REPLYTO> "(" EVENTREF "," EVENTREF ")"
OCCURGUARD ::= <OCCUR> "(" EVENTREF ")"
CARDGUARD ::= "#" COMPARE (VALUE | <ALLCARD>)
EVENTREF ::= <NAME> | <DOTNAME> | <PREV>

VALUE ::= FUNCTION | BUILTINGUARD
| <NAME> | <DOTNAME> | <PREVPARM>
| <REAL> | <INTEGER> | <BOOLEAN>

COMPARE ::= <LESS> | <LESSEQUAL> | <EQUAL>
| <GREATER> | <GREATEREQUAL>

FUNCTION ::= <NAME> "(" (VALUE ("," VALUE)*)? ")"
INFIX ::= <AND> | <OR> | <XOR> | <CAUSES>

BOUNDNAME ::= <NAME> | <DOTNAME>

180

