
Language Support for Distribution in CSCW Systems

Andrew Berry, Simon Kaplan
School of Information Technology

The University of Queenslandfandyb,simong@dstc.edu.au

1 Introduction

Systems for Computer Supported Cooperative Work
(CSCW) are demanding in their use of distributed systems
infrastructure. CSCW systems typically require facilities
such as group communication (multicast), object replica-
tion, and streamed, multi-party audio or video. The in-
teraction mechanisms supported by mainstream tools like
CORBA[19] and DCE[24] are low-level and limited to mes-
sage passing or remote procedure call (RPC). While this is
sufficient for information processing applications with sim-
ple client-server or three-tier communication requirements,
it falls short of supporting the flexibility and complexity re-
quired by CSCW systems[5, 22, 14].

There are a number of research-oriented toolkits, for ex-
ample GroupKit[23] and COAST[25], that support some of
the required facilities for CSCW applications. These do not
easily support extension or composition of facilities, how-
ever, because of their “toolkit” nature. In his recent PhD
thesis[8], Paul Dourish suggests that correct approach to
providing the necessary flexibility is throughopen imple-
mentation[15]. This technique requires an infrastructure to
provide a representation of the underlying implementation
that can be modified to suit application requirements, typi-
cally through reflection[16] in a programming language.

With the suggestions of Dourish in mind, we are devel-
oping an executable language for describing the distribution
aspects of CSCW systems. The language,Finesse, is based
on the principles of the A1

p
architecture model for dis-

tributed systems[4]. Its underlying semantics are described
informally in [20], and a draft syntax has been defined[2].

This paper gives an overview of Finesse, its motivation,
and its goals. A set of simple examples is provided in ap-
pendix A to give the flavour of the language and demon-
strate the power of a language-based approach.

2 Introducing Finesse

Finesse is an executable language for describing com-
plex interaction models and distribution mechanisms. Fi-

nesse is used to describe abinding, which is an abstract
entity that encapsulates the communication between dis-
tributed objects participating in an application. Bindings are
described in terms of the following fundamental concepts:

binding: a binding is an infrastructure-provided configura-
tion of network connections and behaviour. A binding
specification describes a configuration of objects and
their allowed or expected interactions.

role: a binding has a set of roles that can or must be filled
by participating objects. One or more objects can ful-
fill a single role, providing a convenient abstraction for
groups.

interface: objects have interfaces through which they in-
teract with their environment. Each interface is con-
nected to one or more roles in the binding and must
implement the behaviour specified by the roles it fills.

events: objects participate in a binding (interact) by exe-
cuting events at their interfaces. Events have parame-
ters and direction (in or out).

event relationships: event relationships specify the be-
haviour and interactions of a binding by describing the
relationships between events occurring at object inter-
faces.

A binding is instantiated by nominating a Finesse pro-
gram (or some compiled form) and a set of objects to fulfill
the roles of the binding. The underlying distributed infras-
tructure is required to establish an appropriate set of net-
work connections and supporting objects to implement the
Finesse program. A Finesse program can be used to gener-
ate stubs for the participating objects in a similar manner to
CORBA IDL, meaning that Finesse is somewhat indepen-
dent of the language used to build the participating objects.

2.1 Behavioural Model

Event relationships provide the basis for describing be-
haviour in bindings. Event relationships capture the depen-

ECSCW’97 OOGP Workshop 1



dencies between events at the interfaces of objects partici-
pating in a distributed application. Three distinct types of
event relationship are identified:

Causal relationships which describe the causal dependen-
cies between events;

Parameter relationships which describe the relationships
between parameters of causally related events. Pa-
rameter relationships define the content of messages
passed between interacting objects, but in a declara-
tive, application-oriented manner;

Timing relationships which describe the real-time rela-
tionship between events. These relationships can be
used to describe, for example, timeouts or quality of
service requirements of interactions.

A draft formal specification of these concepts and their
interrelationships is given in [3]. These concepts, combined
with the notions ofbinding, object, interfaceandrole from
the A1

p
model, provide an extremely powerful technique

for the description of distributed systems interaction. For
example, it is possible to succinctly describe and easily
extend remote procedure call, group communication, and
stream behaviour. The model described in [20] also in-
cludes powerful facilities for abstraction and composition
of these behaviours, although only some of those capabili-
ties are visible in Finesse.

2.2 Language Definition and Implementation

The behavioural model described in the previous sub-
section has been used as the basis for the draft definition of
the language syntax[2]. The language has many similarities
with process algebras like CSP[12] and CCS[18], but has
partial ordering semantics (i.e. true concurrency) and more
powerful structuring and abstraction capabilities. The in-
formal syntax and semantics are the basis for ongoing work
that will formalise and implement the language. Presently,
a formal specification of the language is being developed to
assist in analysis and implementation. An implementation
of the language over the distributed infrastructure Hector[1]
is planned.

A set of example “programs” are provided in appendix
A. These are minimal examples, but serve to present the
flavour of the language and demonstrate the ease with which
simple interactions can be extended to suit application re-
quirements.

3 Influences and Related Work

3.1 CSCW

The work has used examples from the CSCW research
community for motivation and requirements, in particular
the work of the wOrlds CSCW research group[14] at the
CRC for Distributed Systems Technology. The following
key requirements have been identified:� It should be possible to incorporate existing applica-

tion components and interaction mechanisms in a co-
hesive and flexible manner;� The infrastructure should support dynamically config-
urable replication with a variety of mechanisms to deal
with varying bandwidth, latency and coordination re-
quirements in Internet-scale networks;� It should be possible for users to dynamically vary
their participation in and awareness of collaborative
activities. This is necessary to support the ever-
changing work focus of individuals and the varying
quality of service provided by the network.

Finesse is similar in some respects to a number of ex-
isting languages for describing coordination in CSCW sys-
tems, including DWCPL[7] and Trellis[10]. These lan-
guages focus, however, on synchronous groupware and exe-
cute in a closed environment. Finesse is a more general lan-
guage with applications in traditional distributed systems as
well as CSCW.

3.2 Architecture and Coordination Languages

Finesse is also influenced by recent work in architec-
ture description languages. Research into software archi-
tecture [26, 27] is strongly supporting a model of program-
ming that distinguishes software components and theircon-
nectors. This model promotes reuse and reduces the cou-
pling of software components, and a number ofarchitec-
ture description languageshave been developed, for exam-
ple Wright[11] and Rapide[17]. The primary difference be-
tween Finesse and these languages is that architecture de-
scription languages, with the exception of Rapide, are not
executable. They provide a framework for describing inter-
action in an abstract manner, but no means to automatically
realise that abstraction. They also tend not to deal with data
type issues. Rapide[17] overcomes some of these deficien-
cies, but is strongly oriented towards simulation rather than
programming and has a closed data model.

Recent efforts in developing coordination languages and
models[6] for distributed systems have focused on the need

ECSCW’97 OOGP Workshop 2



to distinguish components and their coupling, and incor-
porate strong abstraction capabilities in languages for pro-
gramming distributed systems. These same principles are
used in Finesse, although coordination languages tend to
be closed-language environments, requiring all components
and their coordination to be managed by a controlled en-
vironment. Most have minimal support for non-procedural
interactions (for example, streams), and in some cases re-
quire tight coupling between software components.

3.3 Open Distributed Processing

The A1
p

model upon which Finesse is based has a
strong relationship with the ISO Basic Reference Model of
Open Distributed Processing[13, 21]. The CRC for Dis-
tributed Systems Technology was actively involved in the
ISO standardisation process, with the A1

p
model used as a

vehicle for their participation. The notions of binding and
interface are strongly related to similar ODP concepts, al-
though the A1

p
model does not use the ODPviewpoints.

Finesse benefits from the open systems approach, not pre-
scribing specific data models or infrastructure.

3.4 Example Problems

To validate the work, a number of more complex appli-
cation examples from distributed systems and CSCW will
be written and tested using the implementation of Finesse.
The following examples are planned:

Replication: one of the key requirements of CSCW sys-
tems that operate over Internet-scale networks is flexi-
ble replication. This example will provide a relatively
abstract replication binding and a number of compati-
ble refinements with different properties to suit the re-
quirements of a particular work context. Applications
written using the abstract replication binding can be in-
stantiated with any of the compatible refinements, de-
pending on the current requirements.

Conferencing: a binding or set of bindings for managing
audio and video conferencing sessions will be pro-
duced.

Locales: the wOrlds research group is implementing a dis-
tributed framework for supporting the concept of alo-
cale, which is a virtualplacecontaining tools and ar-
tifacts for collaborative work[9]. A set of bindings to
implement a version of the locales framework will be
written in Finesse. These bindings will use the preced-
ing examples as components.

Other examples might be defined if required. The rel-
ative success of these examples will be used to gauge the

effectiveness and applicability of the Finesse. The measure
of success will be based on the following criteria:

1. the ability to describe each example using Finesse (i.e.
can it be done in Finesse?)

2. the complexity of the examples in Finesse compared
with traditional approaches;

3. the ease with which applications using Finesse can be
changed, reconfigured or extended;

4. feedback from developers involved in the creation and
use of the examples.

4 Summary

This research is addressing the problem of supporting
CSCW over a distributed systems infrastructure. Based on
the results of research to date, a language-based approach
is being pursued. A semantic model for languages that de-
scribe interactions in distributed systems has been devel-
oped, and the definition of a particular language, Finesse, is
partially completed.

The remainder of this research will focus on refinement
of Finesse through formalisation and validation through ex-
amples. An implementation of the language is planned, and
this will be used to implement and test the examples.

References

[1] D. Arnold, A. Bond, M. Chilvers, and R. Taylor. Hector:
Distributed objects in python. InProceedings of the 4th In-
ternational Python Conference, Livermore, California, June
1996.

[2] A. Berry. Finesse: An event-based binding lan-
guage. http://www.dstc.edu.au/AU/staff/andrew-
berry/phd/syntax.html.

[3] A. Berry. A Z specification for event relation-
ships. http://www.dstc.edu.au/AU/staff/andrew-
berry/phd/spec.html.

[4] A. Berry and K. Raymond. The A1
p

architecture model. In
Open Distributed Processing: Experiences with distributed
environments. IFIP, Chapman and Hall, Feb. 1995.

[5] G. Blair and T. Rodden. The challenges of CSCW for Open
Distributed Processing. InOpen Distributed Processing, II.
IFIP, North Holland, 1993.

[6] P. Ciancarini and C. Hankin, editors.Coordination Lan-
guages and Models, volume 1061 ofLecture Notes in Com-
puter Science. Springer, 1996.

[7] M. Cortes and P. Mishra. DWCPL: A programming lan-
guage for describing collaboration. InACM 1996 Confer-
ence on Computer Supported Cooperative Work, Nov. 1996.

[8] P. Dourish. Open Implementation and Flexibility in CSCW
Toolkits. PhD thesis, Department of Computer Science, Uni-
versity College London, 1996.

ECSCW’97 OOGP Workshop 3



[9] G. Fitzpatrick, W. J. Tolone, and S. M. Kaplan. Work, lo-
cales and distributed social wOrlds. InProc. of the 4th Eu-
ropean Conference on CSCW. Kluwer Academic Publishers,
1995.

[10] R. Furuta and P. D. Stotts. Interpreted collaboration proto-
cols and their use in groupware prototyping. InProceedings
of the ACM 1994 Conference on Computer Supported Co-
operative Work, Oct. 1994.

[11] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting style in
architectural design issues. InProceedings of SIGSOFT’94:
Foundations of Software Engineering. ACM Press, Dec.
1994.

[12] C. A. R. Hoare.Communicating Sequential Processes. Pren-
tice Hall, 1985.

[13] ISO/IEC 10746-1 10756-2 10746-3 10746-4 Basic Refer-
ence Model for Open Distributed Processing.

[14] S. Kaplan, G. Fitzpatrick, T. Mansfield, and W. J. Tolone.
MUDdling through. InProceedings of the Thirtieth Annual
Hawaii International Conference on System Sciences: In-
formation Systems—Collaboration Systems and Technology,
1997.

[15] G. Kiczales. Beyond the black box: Open implementation.
IEEE Software, pages 8–11, Jan. 1996.

[16] G. Kiczales, J. des Rivieres, and D. Bobrow.The Art of the
Metaobject Protocol. MIT Press, 1991.

[17] D. C. Luckham and J. Vera. An event based architecture
definition language.IEEE Transactions on Software Engi-
neering, Sept. 1995.

[18] R. Milner. Communication and Concurrency. Prentice Hall,
1989.

[19] The common object request broker: Architecture and spec-
ification. The Object Management Group, 1995. Revision
2.0.

[20] A. Rakotonirainy, A. Berry, S. Crawley, and Z. Milosevic.
Describing open distributed systems: A foundation. InPro-
ceedings of the Thirtieth Annual Hawaii International Con-
ference on System Sciences: Software Technology and Ar-
chitecture, 1997.

[21] K. Raymond. Reference Model of Open Distributed Pro-
cessing (RM-ODP): Introduction. InOpen Distributed Pro-
cessing: Experiences with distributed environments. IFIP,
Chapman and Hall, Feb. 1995.

[22] T. Rodden, J. A. Mariani, and G. Blair. Supporting cooper-
ative applications.Computer Supported Cooperative Work,
1:41–67, 1992.

[23] M. Roseman and S. Greenberg. GroupKit: a groupware
toolkit for building real-time conferencing application.In
Proc. 4rd Int. Conf. on CSCW. ACM Press, Nov. 1992.

[24] W. Rosenbury, D. Kenney, and G. Fisher.Understanding
DCE. O’Reilly and Associates, Inc., September 1992.

[25] C. Schuckmann, L. Kirchner, J. Schummer, and J. M.
Haake. Designing object-oriented synchronous groupware
with COAST. InACM 1996 Conference on Computer Sup-
ported Cooperative Work, Nov. 1996.

[26] M. Shaw. Procedure calls are the assembly language of soft-
ware interconnection: Connectors deserve first-class status.
Technical Report CMU-CS-94-107, Software Engineering
Institute, Carnegie Mellon Univerity, Jan. 1994.

[27] M. Shaw and D. Garlan.Software Architecture: Perspectives
on an emerging discipline. Prentice Hall, 1996.

ECSCW’97 OOGP Workshop 4



A Example: RPC to Multicast RPC

The following examples demonstrate the basic features and structuringof Finesse. We use the language to define RPC
interaction, then extend RPC to implement multicast RPC with minimal changes. Other examples, including an example of
multi-party audio and video conferencing, have been developed using a similar technique, but are not included here due to
length constraints.

A.1 Parameterisable RPC

The following binding describes a parameterisable RPC interaction withtwo roles, client and server. TheRolessection
defines the behaviour of the participants. TheBehavioursection defines the relationship between the roles. A set of required
messages and hence appropriate network connections can be derived from the behaviour.

Binding RPC {
-- simple, parameterisable RPC

Roles {
-- the client role is parameterised by a set of input and output values
Client(IN, OUT) {

-- the client executes a send (output) followed by a receive (input)
send!(IN) -> receive?(OUT);

}

-- the server role is similarly parameterised
Server(IN, OUT) {

-- the server executes a receive followed by a send
receive?(IN) -> send!(OUT);

}
}

Behaviour {
-- the client send causes the server to receive, with parameters
-- matched by name
Client.send -> Server.receive {*= prev};

-- the server send causes the client to receive, with parameters
-- matched by name
Server.send -> Client.receive {*= prev};

}
}

The following syntactic elements are used:� Client(IN;OUT ) introduces the client role, parameterised by a set of sent values sent (IN) and aset of received values
(OUT).� send!(IN) indicates an event where the client outputs the IN values� receive?(OUT ) indicates an event where the client accepts the OUT values� � > indicates a causal relationships between events, that isA� > B specifies thatA affectsB hence must occur beforeB.� Client:send refers to the execution of the client send event.

ECSCW’97 OOGP Workshop 5



� � = prev indicates that the parameters of the current event should be set equal to parameters having the same name in
the previous event (i.e. name equivalence).

A.2 Example: File Access using RPC

Use of this parameterisable RPC binding is demonstrated in the following binding definition for file I/O:

Binding FileIO {
-- read-only file access using RPC

Import RPC;

Roles {
-- Client and Server implement open/read/close
Client {

open { RPC.Client ((string name), (handle fh)); }
read { RPC.Client ((handle fh, int bytes), (buffer buf, int bytes)); }
close { send!(handle fh); }

open -> read *+ -> close;
}
Server {

open { RPC.Server ((string name), (handle fh)); }
read { RPC.Server ((handle fh, int bytes), (buffer buf, int bytes)); }
close { receive?(handle fh); }

open -> read *+ -> close;
}

}

Behaviour {
-- Client operations result in corresponding server operations.
-- Operations are performed sequentially.
RPC(Client.open, Server.open) ->
RPC(Client.read, Server.read) *+ ->
Client.close -> Server.close {*= prev};

}
}

The�+ operator indicates sequential, causally dependent repetition of the preceding event. A similar operator,��, is used
for parallel, independent repetition.

A.3 Multicast RPC

The original RPC binding can be extended to support multicast RPC. The client and server roles are unmodified, allowing
the original client and server to be used:

Binding MultiRPC {

Import RPC;

Roles {

ECSCW’97 OOGP Workshop 6



Client { RPC.Client; }
-- the cardinality constraint specifies that there must be at least
-- one server.
[#>=1] Server { RPC.Server; }

}

Behaviour {
-- a client send causes all servers to receive
Client.send -> [#=all] Server.receive {*= prev};

-- however, only one of the responses causes a result to be
-- delivered to the client.
[#=1] Server.send -> Client.receive {*= prev};

}
}

This example introduces cardinality constraints associated with roles andtheir behaviour. All roles in a binding can
potentially be filled by many participating objects. By default, a role isfilled by only one participant. The addition of
an appropriate cardinality constraint allows a role to be filled by multiple participants. This use of cardinality constraints
provides a convenient and powerful mechanism for describing group communication.

A.4 Replicated File Access

A replicated file access binding shows how the multicast RPC binding can be used:

Binding ReplFileIO {
-- replicated, read-only file access

Import MultiRPC, FileIO;

Roles {
-- Client and Servers implement open/read/close operations, as
-- before. Only Server cardinality has changed.
Client { FileIO.Client }
[#>=1] Server { FileIO.Server }

}

Behaviour {
-- RPCs by client are multicast to servers
MultiRPC(Client.open, Server.open) ->
MultiRPC(Client.read, Server.read) *+ ->
Client.close -> [#=all] Server.close {*= prev};

}
}

This set of examples demonstrates how a basic interaction mechanism can be extended to suit new requirements. Notice
in particular, that clients and servers are unchanged despite the change in interaction mechanism. This suggests significant
potential for reuse and legacy application integration.

ECSCW’97 OOGP Workshop 7


