Language Support for Distribution in CSCW Systems

Andrew Berry, Simon Kaplan
School of Information Technology
The University of Queensland
{andyb,simoh@dstc.edu.au

1 Introduction nesse is used to describebmding which is an abstract
entity that encapsulates the communication between dis-
Systems for Computer Supported Cooperative Work tributed objects participating in an application. Bindings are
(CSCW) are demanding in their use of distributed systemsdescribed in terms of the following fundamental concepts:
infrastructure. CSCW systems typically require facilities
such as group communication (multicast), object replica-
tion, and streamed, multi-party audio or video. The in-
teraction mechanisms supported by mainstream tools like
CORBA[19] and DCE[24] are low-level and limited to mes-
sage passing or remote procedure call (RPC). While this isrole: a binding has a set of roles that can or must be filled

binding: a binding is an infrastructure-provided configura-
tion of network connections and behaviour. A binding
specification describes a configuration of objects and
their allowed or expected interactions.

sufficient for information processing applications with sim- by participating objects. One or more objects can ful-
ple client-server or three-tier communication requirements, fill a single role, providing a convenient abstraction for
it falls short of supporting the flexibility and complexity re- groups.

quired by CSCW systems|5, 22, 14]. _)) . .
There are a number of research-oriented toolkits, for ex- Nterface: objects have interfaces through which they in-
ample GroupKit[23] and COAST[25], that support some of teract with their envwonment.. Each |_nte_rface is con-
the required facilities for CSCW applications. These do not nected to one or more roles in the binding and must
easily support extension or composition of facilities, how- implement the behaviour specified by the roles it fills.

ever, because of their “toolkit” nature. In his recent PhD eyents: objects participate in a binding (interact) by exe-
thesis[8], Paul Dourish suggests that correct approach to cyting events at their interfaces. Events have parame-
providing the necessary flexibility is througipen imple- ters and direction (in or out).

mentatiofil5]. This technique requires an infrastructure to

provide a representation of the underlying implementation €vent relationships: event relationships specify the be-

that can be modified to suit application requirements, typi- haviour and interactions of a binding by describing the
cally through reflection[16] in a programming language. relationships between events occurring at object inter-
With the suggestions of Dourish in mind, we are devel- faces.

oping an executable Ianguagefordescribing thg distribution A binding is instantiated by nominating a Finesse pro-
aspehcts O.f C.S T:W sfy sr':ems. Ther:angudt’gmessdells fbasde_d gram (or some compiled form) and a set of objects to fulfill
on the principles of the AY architecture model for dis- 0 ygje5 of the binding. The underlying distributed infras-
.t“bUted sy§tems[4]. Its underlying semantics are .descr'bedtructure is required to establish an appropriate set of net-
'”fO”T‘a”y n [20.]’ and a draft _syntax has beer_1 defmc_ed[?], work connections and supporting objects to implement the
Th's paper gives an overview of Fmes_se, Its r_not|v_at|on, Finesse program. A Finesse program can be used to gener-
and 'FS goals. .A set of simple examples is provided in ap- ate stubs for the participating objects in a similar manner to
pendix A to give the Ravour of the language and demon- CORBA IDL, meaning that Finesse is somewhat indepen-
strate the power of a language-based approach. dent of the language used to build the participating objects.

2 Introducing Finesse 2.1 Behavioural Model

Finesse is an executable language for describing com- Event relationships provide the basis for describing be-
plex interaction models and distribution mechanisms. Fi- haviour in bindings. Event relationships capture the depen-

ECSCW'97 OOGP Workshop 1

dencies between events at the interfaces of objects partici3 Influences and Related Work
pating in a distributed application. Three distinct types of
event relationship are identified: 3.1 CSCW

Causal relationships which describe the causal dependen- ~ The work has used examples from the CSCW research
cies between events: community for motivation and requirements, in particular

the work of the wOrlds CSCW research group[14] at the
CRC for Distributed Systems Technology. The following
Parameter relationships which describe the relationships key requirements have been identified:
between parameters of causally related events. Pa-
rameter relationships define the content of messages e It should be possible to incorporate existing applica-
passed between interacting objects, but in a declara- tion components and interaction mechanisms in a co

tive, application-oriented manner; hesive and flexible manner;
-) ¢ The infrastructure should support dynamically config-
Timing relationships which describe the real-time rela- urable replication with a variety of mechanisms to deal
tionship between events. These relationships can be ith varying bandwidth, latency and coordination re-
used to describe, for example, timeouts or quality of quirements in Internet-scale networks;

service requirements of interactions.

e It should be possible for users to dynamically vary
their participation in and awareness of collaborative
activities. This is necessary to support the ever-
changing work focus of individuals and the varying
quality of service provided by the network.

A draft formal specification of these concepts and their
interrelationships is given in [3]. These concepts, combined
with the notions obinding, object interfaceandrole from
the Al,/ model, provide an extremely powerful technique
for the description of distributed systems interaction. For Finesse is similar in some respects to a number of ex-

example, it is possible to succinctly describe and easily iging janguages for describing coordination in CSCW sys-
extend remote procedure call, group communication, andtems, including DWCPL[7] and Trellis[10]. These lan-

s‘lcredam beha\?lolufr. _Fhe rpodetl) described '3 [20] also in- 4 a5es focus, however, on synchronous groupware and exe-
cludes powertful facilities for abstraction and cOMpOSIoN ¢, 16 i 5 closed environment. Finesse is a more general lan-

of these behaviours, although only some of those capabili-y 546 with applications in traditional distributed systems as
ties are visible in Finesse. well as CSCW.

2.2 Language Definition and Implementation 3.2 Architecture and Coordination Languages

Finesse is also influenced by recent work in architec-

The behavioural model described in the previous sub-tyre description languages. Research into software archi-
section has been used as the basis for the draft definition ofecture [26, 27] is strongly supporting a model of program-
the language syntax[2]. The language has many similaritiesming that distinguishes software components and thoir
with process algebras like CSP[12] and CCS[18], but hasnectors This model promotes reuse and reduces the cou-
partial ordering semantics (i.e. true concurrency) and morepling of software components, and a numberahitec-
pOWGrfUl StrUCtUring and abstraction Capabilities. The in- ture description |anguagd‘$ave been deve|oped, for exam-
formal syntax and semantics are the basis for ongoing workp|e Wright[11] and Rapide[17]. The primary difference be-
that will formalise and implement the language. Presently, tween Finesse and these languages is that architecture de-
a formal specification of the language is being developed toscription languages, with the exception of Rapide, are not
assist in analysis and implementation. An implementation executable. They provide a framework for describing inter-
of the language over the distributed infrastructure Hector[1] action in an abstract manner, but no means to automatically
is planned. realise that abstraction. They also tend not to deal with data

A set of example “programs” are provided in appendix type issues. Rapide[17] overcomes some of these deficien-
A. These are minimal examples, but serve to present thecies, but is strongly oriented towards simulation rather than
flavour of the language and demonstrate the ease with whiclprogramming and has a closed data model.
simple interactions can be extended to suit application re- Recent efforts in developing coordination languages and
quirements. models[6] for distributed systems have focused on the need

ECSCW'97 OOGP Workshop 2

to distinguish components and their coupling, and incor- effectiveness and applicability of the Finesse. The measure
porate strong abstraction capabilities in languages for pro-of success will be based on the following criteria:

gramming distributed systems. These same principles are

used in Finesse, although coordination languages tend to 1. the ability to describe each example using Finesse (i.e.
be closed-language environments, requiring all components ~ can it be done in Finesse?)

and their coordination to be managed by a controlled en-
vironment. Most have minimal support for non-procedural
interactions (for example, streams), and in some cases re-

quire tight coupling between software components. 3. the ease with which applications using Finesse can be
changed, reconfigured or extended;

2. the complexity of the examples in Finesse compared
with traditional approaches;

3.3 Open Distributed Processing
4. feedback from developers involved in the creation and

The AL/ model upon which Finesse is based has a USe Of the examples.

strong relationship with the ISO Basic Reference Model of
Open Distributed Processing[13, 21]. The CRC for Dis- 4 Summary
tributed Systems Technology was actively involved in the

ISO standardisation process, with theAinodel used as a This research is addressing the problem of supporting
vehicle for their participation. The notions of binding and cscw over a distributed systems infrastructure. Based on
interface are strongly related to similar ODP concepts, al- the results of research to date, a language-based approach

though the A1/ model does not use the ODRewpoints s being pursued. A semantic model for languages that de-

Finesse benefits from the open systems approach, not prescribe interactions in distributed systems has been devel-

scribing specific data models or infrastructure. oped, and the definition of a particular language, Finesse, is
partially completed.

3.4 Example Problems The remainder of this research will focus on refinement

of Finesse through formalisation and validation through ex-
To validate the work, a number of more complex appli- amples. An implementation of the language is planned, and
cation examples from distributed systems and CSCW will this will be used to implement and test the examples.
be written and tested using the implementation of Finesse.
The following examples are planned: References

Replication: one of the key requirements of CSCW sys-
tems that operate over Internet-scale networks is flexi-
ble replication. This example will provide a relatively

[1] D. Arnold, A. Bond, M. Chilvers, and R. Taylor. Hector:
Distributed objects in python. IRroceedings of the 4th In-
ternational Python Conferenceivermore, California, June

abstract replication binding and a number of compati- 1996.

ble refinements with different properties to suitthe re- [2] A. Berry. Finesse: An event-based binding lan-
quirements of a particular work context. Applications guage. http://www.dstc.edu.au/AU/staff/andrew-
written using the abstract replication binding can be in- berry/phd/syntax.html.

stantiated with any of the compatible refinements, de- [3] A. Berry. A Z specification for event relation-
pending on the current requirements. ships. http://www.dstc.edu.au/AU/staff/andrew-

berry/phd/spec.html.
Conferencing: a binding or set of bindings for managing [4] A.Berry and K. Raymond. The A} architecture model. In

audio and video conferencing sessions will be pro- Open Distributed Processing: Experiences with distribute
duced. environmentslIFIP, Chapman and Hall, Feb. 1995.
[5] G.Blairand T. Rodden. The challenges of CSCW for Open
Locales: the wOrlds research group is implementing a dis- Distributed Processing. I®pen Distributed Processing,. |l
tributed framework for supporting the concept dba IFIP, North Holland, 1993.

[6] P. Ciancarini and C. Hankin, editorsCoordination Lan-
guages and Modelsolume 1061 of_ecture Notes in Com-
puter ScienceSpringer, 1996.

] M. Cortes and P. Mishra. DWCPL: A programming lan-

cale which is a virtualplace containing tools and ar-
tifacts for collaborative work[9]. A set of bindings to
implement a version of the locales framework will be [7

written in Finesse. These bindings will use the preced- guage for describing collaboration. KCM 1996 Confer-
ing examples as components. ence on Computer Supported Cooperative \\idv. 1996.
[8] P. Dourish. Open Implementation and Flexibility in CSCW
Other examples might be defined if required. The rel- Toolkits PhD thesis, Department of Computer Science, Uni-

ative success of these examples will be used to gauge the versity College London, 1996.

ECSCW'97 OOGP Workshop 3

[9] G. Fitzpatrick, W. J. Tolone, and S. M. Kaplan. Work, lo-
cales and distributed social wOrlds. Bnoc. of the 4th Eu-
ropean Conference on CSCWluwer Academic Publishers,
1995.

[10] R. Furuta and P. D. Stotts. Interpreted collaboratiootq
cols and their use in groupware prototyping Proceedings
of the ACM 1994 Conference on Computer Supported Co-
operative WorkOct. 1994,

[11] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting sty
architectural design issues. Pmoceedings of SIGSOFT'94:
Foundations of Software EngineerindCM Press, Dec.
1994.

[12] C.A.R.HoareCommunicating Sequential Processesen-
tice Hall, 1985.

[13] ISO/IEC 10746-1 10756-2 10746-3 10746-4 Basic Refer-
ence Model for Open Distributed Processing.

[14] S. Kaplan, G. Fitzpatrick, T. Mansfield, and W. J. Tolone
MUDdIling through. InProceedings of the Thirtieth Annual
Hawaii International Conference on System Sciences: In-
formation Systems—Collaboration Systems and Technology
1997.

[15] G. Kiczales. Beyond the black box: Open implementation
IEEE Softwarepages 8-11, Jan. 1996.

[16] G. Kiczales, J. des Rivieres, and D. Bobrothe Art of the
Metaobject ProtocolMIT Press, 1991.

[17] D. C. Luckham and J. Vera. An event based architecture
definition language.l[EEE Transactions on Software Engi-
neering Sept. 1995.

[18] R. Milner. Communication and Concurrencirentice Hall,
1989.

[19] The common object request broker: Architecture and-spe
ification. The Object Management Group, 1995. Revision
2.0.

[20] A. Rakotonirainy, A. Berry, S. Crawley, and Z. Milosevi
Describing open distributed systems: A foundationPin-
ceedings of the Thirtieth Annual Hawaii International Con-
ference on System Sciences: Software Technology and Ar-
chitecture 1997.

[21] K. Raymond. Reference Model of Open Distributed Pro-
cessing (RM-ODP): Introduction. I@pen Distributed Pro-
cessing: Experiences with distributed environmerfsP,
Chapman and Hall, Feb. 1995.

[22] T. Rodden, J. A. Mariani, and G. Blair. Supporting coepe
ative applications Computer Supported Cooperative Work
1:41-67, 1992.

[23] M. Roseman and S. Greenberg. GroupKit: a groupware
toolkit for building real-time conferencing applicatiorin
Proc. 4rd Int. Conf. on CSCWACM Press, Nov. 1992.

[24] W. Rosenbury, D. Kenney, and G. Fishddnderstanding
DCE. O'Reilly and Associates, Inc., September 1992.

[25] C. Schuckmann, L. Kirchner, J. Schummer, and J. M.
Haake. Designing object-oriented synchronous groupware
with COAST. InACM 1996 Conference on Computer Sup-
ported Cooperative WorlNov. 1996.

[26] M. Shaw. Procedure calls are the assembly languagdtef so
ware interconnection: Connectors deserve first-classsstat
Technical Report CMU-CS-94-107, Software Engineering
Institute, Carnegie Mellon Univerity, Jan. 1994.

[27] M. Shaw and D. GarlarSoftware Architecture: Perspectives
on an emerging disciplinePrentice Hall, 1996.

ECSCW'97 OOGP Workshop

A Example: RPC to Multicast RPC

The following examples demonstrate the basic features and structfrifigesse. We use the language to define RPC
interaction, then extend RPC to implement multicast RPC with minimalgdggnOther examples, including an example of
multi-party audio and video conferencing, have been developed usinglargisehnique, but are not included here due to
length constraints.

A.1 Parameterisable RPC

The following binding describes a parameterisable RPC interactiontwdlroles, client and server. THeolessection
defines the behaviour of the participants. Behavioursection defines the relationship between the roles. A set of required
messages and hence appropriate network connections can be derived from thauneha

Bi ndi ng RPC {
-- sinple, paraneterisable RPC

Rol es {
-- the client role is paraneterised by a set of input and output val ues
Cient(IN aUT) {
-- the client executes a send (output) followed by a receive (input)
send! (IN) -> receive?(OUT);
}

-- the server role is simlarly paraneterised
Server (IN, QUT) {
-- the server executes a receive followed by a send
receive?(I N -> send! (QUT);
}
}

Behavi our {
-- the client send causes the server to receive, with parameters
-- mat ched by nane
Client.send -> Server.receive {*= prev};

-- the server send causes the client to receive, with parameters
-- mat ched by nane
Server.send -> Cient.receive {*= prev};

The following syntactic elements are used:

e Client(IN,0OUT) introduces the client role, parameterised by a set of sent values sent (INyahofaeceived values
(OUT).

send!(IN) indicates an event where the client outputs the IN values

receive?(OUT) indicates an event where the client accepts the OUT values

e — > indicates a causal relationships between events, thiatis- B specifies thatl affectsB hence must occur before
B.

Client.send refers to the execution of the client send event.

ECSCW'97 OOGP Workshop 5

e x = prev indicates that the parameters of the current event should be set equal to pasdraeing the same name in
the previous event (i.e. name equivalence).

A.2 Example: File Access using RPC

Use of this parameterisable RPC binding is demonstrated in the folidwinding definition for file 1/O:

Bi nding FilelO{
-- read-only file access using RPC

I mport RPC;

Rol es {
-- Cient and Server inplenent open/read/close
Cient {
open { RPC.dient ((string name), (handle fh)); }
read { RPC.dient ((handle fh, int bytes), (buffer buf, int bytes)); }
close { send! (handle fh); }

open -> read *+ -> cl ose;

}
Server {
open { RPC. Server ((string name), (handle fh)); }
read { RPC Server ((handle fh, int bytes), (buffer buf, int bytes)); }
close { receive?(handle fh); }
open -> read *+ -> cl ose;
}

}

Behavi our {
-- Cient operations result in correspondi ng server operations.
-- Operations are perforned sequentially.
RPC(d i ent. open, Server.open) ->
RPC(d ient.read, Server.read) *+ ->
Client.close -> Server.close {*= prev};

Thex+ operator indicates sequential, causally dependent repetition of the preceelimglesimilar operatos—, is used
for parallel, independent repetition.

A.3 Multicast RPC

The original RPC binding can be extended to support multicast RP€clignt and server roles are unmodified, allowing
the original client and server to be used:

Bi ndi ng Mul ti RPC {
I mport RPC;

Rol es {

ECSCW'97 OOGP Workshop 6

Cient { RPRC.dient; }

-- the cardinality constraint specifies that there nust be at |east

-- one server.
[#>=1] Server { RPC. Server; }

}

Behavi our {
-- a client send causes all servers to receive
Client.send -> [#=all] Server.receive {*= prev};

-- however, only one of the responses causes a result to be

-- delivered to the client.
[#=1] Server.send -> dient.receive {*= prev};

This example introduces cardinality constraints associated with roleshairdbehaviour. All roles in a binding can
potentially be filled by many participating objects. By default, a rolélisd by only one participant. The addition of
an appropriate cardinality constraint allows a role to be filled by mpleltparticipants. This use of cardinality constraints
provides a convenient and powerful mechanism for describing group coration.

A.4 Replicated File Access

A replicated file access binding shows how the multicast RPC binding caseake u

Bi nding Repl Filel O{

}

-- replicated, read-only file access
Import Multi RPC, FilelQ

Rol es {
-- Cient and Servers inplement open/read/cl ose operations,
-- before. Only Server cardinality has changed.
Client { FilelOdient }
[#>=1] Server { FilelQ Server }

}

Behavi our {
-- RPCs by client are nulticast to servers
Mul ti RPC(d i ent.open, Server.open) ->
Multi RPC(COlient.read, Server.read) *+ ->
Client.close -> [#=all] Server.close {*= prev};

}

as

This set of examples demonstrates how a basic interaction mechanism caarimkedxb suit new requirements. Notice
in particular, that clients and servers are unchanged despite the changgaction mechanism. This suggests significant
potential for reuse and legacy application integration.

ECSCW'97 OOGP Workshop

