
A Panacea for Distributed CSCW Infrastructure?Andrew BerryDepartment of Computer ScienceThe University of Queensland<andyb@dstc.edu.au>1 IntroductionOne of the major di�culties of building and deploying a distributed CSCW system is choosing or buildingan appropriate distributed infrastructure. While there are a number of solid infrastructures for buildingdistributed information systems, most of these fall a long way short of providing the 
exible and dynamicsupport required by CSCW systems.Research and commercial development of distributed infrastructure has typically focused on support forbuilding reliable information systems, for example CORBA, DCE and Isis/Horus[14]. These infrastruc-tures provide programmer-oriented functionality in the form of remote procedure call or multicast andunicast messaging. These interaction mechanisms are relatively low-level and static, requiring signi�cantadditional programming to support the higher-level interaction mechanisms found in CSCW systems. Theinfrastructures also tend to be closed, in that all application components1 must be written speci�cally forthe distributed infrastructure being used.Existing CSCW systems, for example wOrlds[5] or TeamRooms[6] have resorted to building their owndistributed infrastructure services by extending existing services and building new infrastructure to suittheir immediate needs. While these approaches have been e�ective, considerable developer e�ort hasbeen expended in developing and con�guring necessary infrastructure. Since these are prototypes whoseprimary goal is to demonstrate and support CSCW research, the resulting distributed infrastructure isoften in
exible and can be di�cult to deploy or extend.My thesis is that the e�ort required to build, con�gure and deploy distributed infrastructure for CSCWsystems can be signi�cantly reduced by the use of an executable architecture description language. Sucha language would support speci�cation of the con�guration of distributed application components andthe interactions of these components in a manner independent of the underlying network and protocols.By providing an execution engine for the language, CSCW application developers need only provide adescription of the con�guration and interactions of their application components. The development ofan architecture description language and underlying distributed infrastructure support is currently beingpursued at the University of Queensland in conjunction with the CRC for Distributed Systems Technology(DSTC). This position statement outlines the plan and progress to date of this work.2 Plan and Progress2.1 An Architecture Description LanguageRecent research in the software engineering discipline has found that in large software systems, the con-�guration and interactions of the components is as complex as the software components themselves. Thisaspect of a software system is traditionally called the architecture of the system and has been treated1The term \components" in this paper refers to executable software components. The term \object" is avoided becauseit tends to be ambiguous across disciplines.



informally or semi-formally in the design process. Software developers typically sketch the architecturewith boxes and lines, relying on the discussion around the sketch to de�ne the semantics. When it comesto coding the software components, the architecture is usually embedded in the components, which makesthem less 
exible and more di�cult to re-use. To address these problems, researchers have begun modellingthe architecture of a software system in a rigorous and semantically well-de�ned manner. A comprehensivereview of work in this area is provided by Shaw and Garlan in [13].A number of approaches are being used to de�ne software architecture, including graphical tools with well-de�ned semantics and architecture description languages (for software, as opposed to hardware architecturedescription languages). These approaches are intended to remove con�guration and interaction code fromcomponents, both supporting greater re-use of components, and capturing the architecture of a solutionfor documentation and potential re-use.In this work, we have chosen to implement an executable architecture description language as a basis fordescription of component con�guration and interactions. By executable, we mean that it will be compiledor interpreted and run over a suitable distributed systems infrastructure. The key to the success of theproposed work is development of a practical, programmer-friendly language for describing the architectureof distributed CSCW systems and applications. This work is well underway, and is driven by two areas ofresearch:1. Work on software architecture and connection languages, in particular the Rapide system[9] and thework of the Software Engineering Institute at Carnegie Mellon University[1][12].2. Ongoing work on distributed systems architecture at the DSTC, and in particular, the A1! Archi-tecture Model[4] and the Reference Model of Open Distributed Processing (RM-ODP)[7], an ISOstandard reference model for distributed systems architecture.These aspects are largely complementary, with the �rst aimed at providing 
exible support for describingsoftware architectures and the second aimed at mapping such software architectures onto a distributedinfrastructure. Our recent work has been the development of a semantic model for architecture descriptionlanguages suitable for distributed infrastructure[10] based on the following fundamental constructs:interface: software components have interfaces through which they interact with their environment (viabindings).binding: a binding is an infrastructure-provided con�guration of network connections and behaviour. Abinding speci�cation describes a con�guration of components and their allowed or expected interac-tions. Components connect to a binding through their interfaces and must satisfy the expectationsof the binding speci�cation.events: components participate in a binding (interact) by executing events at their interface. Events haveparameters and direction (in or out). Events may be non-atomic, that is, they can be built from acon�guration of lower-level events.event relationships: event relationships specify the behaviour and interactions of a binding by describingthe relationships between events occurring at component interfaces. An event relationship speci�ca-tion describes:� the ordering of events, which is a partial order because the components are distributed andoperate in parallel,� the relationships of event parameters, with arbitrary functional relationships permitted betweenrelated events, and� real-time constraints, for example, speci�cation of the maximum allowable delay between theemission of an event and a corresponding reception of a related event.Interactions such as remote procedure call and multicast are described as an event relationship. Inour architecture description language, abstraction and encapsulation facilities will allow pre-de�neddescriptions of these and other common interactions.



The arbitrary functional relationships between parameters are extremely powerful, allowing the descriptionand implementation of bindings that can, for example, connect DCE components to CORBA components.The potential for unbounded complexity resulting from arbitrary functional relationships is dealt with byallowing a binding implementation to restrict the available functions.The semantic model also provides highly-
exible facilities for abstraction, allowing us to hide low-level,protocol-oriented behaviour and provide a concise, high-level view of (abstract) events that are relevantto the application or interaction being described. This could be used, for example, to describe videocommunication in a manner that is independent of its implementation, yet retain compatibility with aparticular implementation.Work is currently underway to use this semantic model as the basis of an architecture description language.This language will describe binding and interface behaviour using events and event relationships. Inaddition to the core elements of the semantic model described above, it is intended that the languageprovide encapsulation, implementation inheritance, and dynamic modi�cation of behaviour through accessto a meta-level. These facilities are intended to give a structured language with the 
exibility necessaryto describe CSCW applications.2.2 Investigation and Description of CSCW SystemsOur work on architectural models for distributed systems has been in progress for several years. It hasbecome clear that for the work to be useful, it must adequately support a wide variety of applications andinteraction styles. To validate and re�ne the model and infrastructure, CSCW systems have been chosenas a target application area due to the inherent complexity of interactions and the need for 
exible anddynamic infrastructure support.In parallel with the architecture description language work, this author has begun to gather the of CSCWsystems requirements through participation in an evaluation of wOrlds[5]. The following key requirementshave been identi�ed:� It should be possible to incorporate existing application components and interaction mechanisms ina cohesive and 
exible manner;� The infrastructure should support dynamically con�gurable replication with a variety of mechanismsto deal with varying bandwidth, latency and coordination requirements in Internet-scale networks;� It should be possible for users to dynamically vary their participation in and awareness of collabo-rative activities. This is necessary to support the ever-changing work focus of individuals and thevarying quality of service provided by the network.It is intended that other CSCW systems, literature and infrastructure toolkits, for example the relevantCOMIC work[3] and GroupKit[11], will also be evaluated to develop a well-rounded set of requirements fordistributed systems infrastructure. The author is also participating in the design of a successor to wOrldsknown as Orbit[8], which will be the source of additional requirements.As an evaluation of the language work described in 2.1, the interaction mechanisms provided or requiredby these systems will be speci�ed in the resulting language. This will both ensure that the language iscapable of describing such systems, and provide a basis for duplicating the infrastructure of those systemsonce the prototype execution environment has been completed.2.3 PrototypingThe binding language described in section 2.1 requires an environment to support its execution. Given suchan environment, a CSCW system developer could, for example, specify a suitable replication strategy in



a high-level language and have it implemented directly by the execution environment. This binding spec-i�cation can be re-used in higher-level bindings that describe application-oriented features, for example,shared document editing.A prototype distributed infrastructure supporting the principles of the A1! Architecture Model[4] hasbeen developed at the DSTC. The Hector[2] prototype aims to provide support for connection betweendistributed components using arbitrary protocols based on a binding description. The focus at presentis on the establishment of such connections in an open environment, including negotiation of bindingspeci�cations and parameters. In its current form, Hector provides only a relatively low-level API forsoftware developers.The goal of this author's work is that an interpreter for the binding language described in section 2.1will execute within the Hector prototype. The researchers working on Hector are in close contact withthe language work, ensuring that our respective goals and requirements remain synchronised. The resultshould be a language and environment for describing and implementing complex CSCW systems over adistributed infrastructure.3 DiscussionThe preceding sections outline the plan and progress of work intended to provide an infrastructure andlanguage environment to support distributed CSCW applications. This work is dependent on the progressof the various pieces that make the puzzle, and leaves us with a number of interesting questions:� Can a feasible distributed infrastructure adequately support the 
exible and dynamic nature ofCSCW applications?� Is it possible to describe the necessary mechanisms of interaction using the semantic model that hasbeen developed?� Are architecture description languages acceptable to developers building CSCW applications andsystems?It is intended that these questions and others will be answered by the continuation of this work. Asuccessful outcome will mean that many of the distributed infrastructure problems currently faced byCSCW researchers will cease to exist.References[1] R. Allen and D. Garlan. Formalizing architectural connection. In Proceedings 16th InternationalConference on Software Engineering. IEEE, May 1994.[2] D. Arnold and A. Bond. An interaction glue for middleware. DSTC Internal Report, Mar. 1995.[3] S. Benford and J. Mariani, editors. Requirements and Metaphors of Shared Interaction, COMICDeliverable 4.1. Esprit Basic Research Action 6225, Oct. 1993.[4] A. Berry and K. Raymond. The A1! architecture model. In Open Distributed Processing: Experienceswith distributed environments. IFIP, Chapman and Hall, Feb. 1995.[5] G. Fitzpatrick, W. J. Tolone, and S. M. Kaplan. Work, locales and distributed social wOrlds. InProc. of the 4th European Conference on CSCW. Kluwer Academic Publishers, 1995.[6] S. Greenberg, C. Gutwin, M. Roseman, and A. Cockburn. From awareness to TeamRooms, Group-Web and TurboTurtle: Eight snapshots of recent work in the GroupLab project. Technical Report95/580/32, Dept. of Computer Science, University of Calgary, Dec. 1995.



[7] 10746-1 10756-2 10746-3 Basic Reference Model for Open Distributed Processing.[8] S. Kaplan, G. Fitzpatrick, T. Mans�eld, and W. J. Tolone. MUDdling through. To appear in IEEEProceedings HICSS'97, 1996.[9] D. C. Luckham and J. Vera. An event based architecture de�nition language. IEEE Transactions onSoftware Engineering, Sept. 1995.[10] A. Rakotonirainy, A. Berry, S. Crawley, and Z. Milosevic. Describing open distributed systems: Afoundation. To appear in IEEE Proceedings HICSS'97, 1996.[11] M. Roseman and S. Greenberg. GroupKit: a groupware toolkit for building real-time conferencingapplication. In Proc. 4rd Int. Conf. on CSCW. ACM Press, Nov. 1992.[12] M. Shaw. Procedure calls are the assembly language of software interconnection: Connectors deserve�rst-class status. Technical Report CMU-CS-94-107, Software Engineering Institute, Carnegie MellonUniverity, Jan. 1994.[13] M. Shaw and D. Garlan. Software Architecture: Perspectives on an emerging discipline. PrenticeHall, 1996.[14] R. van Renesse, K. P. Birman, and S. Ma�eis. Horus, a 
exible group communication system.Communications of the ACM, Apr. 1996.


