Open, Distributed Coordination with Finesse

Andrew Berry, Simon Kaplan
School of Information Technology
The University of Queensland
{andyb,simon }dstc.edu.au

Coodination languages, distributed systems

Abstract

Coordination languages have recently been attracting sig-
nificant attention as a means of programming parallel and
distributed systems. The approach of separating coordi-
nation from computation is particularly attractive in dis-
tributed systems because there are a wide range of possible
interaction, quality and reliability semantics that are either
hidden or ignored by traditional infrastructures based on re-
mote procedure call. Introducing an explicit, programmable
model for the distributed infrastructure makes these seman-

tics visible and tractable, without requiring substantial changes

in distributed components. This paper presents Finesse,
a language for describing the interaction of components in

open distributed systems, and demonstrates its power through

a number of examples.

1 Introduction

Coordination languages have recently been attracting sig-
nificant attention as a means of programming parallel and
distributed systems. The approach of separating coordi-
nation from computation is particularly attractive in dis-
tributed systems because there are a wide range of possible
interaction, quality and reliability semantics that are either
hidden or ignored by traditional infrastructures based on
remote procedure call (RPC). Introducing an explicit, pro-
grammable model for the distributed infrastructure makes
these semantics visible and tractable, without requiring sub-
stantial changes in distributed components.

At the same time, research and standardisation in the
field of Open Distributed Processing[3, 7, 13] has recog-
nised the need to distinguish between the behaviour of dis-
tributed components and their interaction. The notions of
binding[3] and binding object[7] are conceptually equivalent
to the coordination primitives in languages like Manifold[1]
and ConCoord[6].

This paper presents Finesse, a language for describing
the interaction of components in open distributed systems.

Finesse has evolved out of research in open distributed pro-
cessing, beginning with the Aly/ architecture model[3] and
more recently, a semantic model for describing interactions
in open distributed systems[12]. The development of Fi-
nesse is being driven by requirements of CSCW systems,
whose implementors are demanding users and frequent crit-
ics of existing distributed systems infrastructure[8, 4]. The
key distinguishing features of Finesse are that:

1. Finesse abstracts over communication, allowing trans-
formation of data and compiler or run-time optimisa-
tion of message passing between components.

2. Finesse includes a representation of time, allowing the
specification of quality of service properties;

3. Finesse is independent of the language used for pro-
gramming the distributed components. It is similar in
concept to CORBA IDL, for example, where the pro-
gram is compiled to produce interface stubs for com-
ponents in the chosen language(s);

In this paper, section 2 gives an overview of the underly-
ing semantic model, section three describes the language
syntax and informal semantics, and section 4 presents a
number of examples. Section 5 discusses related work and
ongoing issues, and section 6 concludes the paper.

2 Underlying Semantics

2.1 Fundamental Concepts

Finesse is an executable language for describing complex in-
teraction models and distribution mechanisms. Finesse is
used to describe a binding, which is an abstract entity that
encapsulates the communication between distributed soft-
ware components participating in an application. Bindings
are described in terms of the following fundamental con-
cepts:

binding: a binding is an infrastructure-provided configura-
tion of network connections and behaviour. A bind-
ing specification in Finesse describes a configuration
of components and their allowed or expected interac-
tions.

role: a binding has a set of roles that can or must be filled
by participating components. One or more compo-
nents can fulfil a single role, providing a convenient
abstraction for groups.



interface: components have interfaces through which they
interact with their environment. Each interface is con-
nected to one or more roles in the binding and must
implement the behaviour specified by the roles it fills.

events: components participate in a binding (interact) by
executing events at their interfaces. Events have pa-
rameters and direction (in or out).

event relationships: event relationships specify the be-
haviour and interactions of a binding by describing
the relationships between events occurring at object
interfaces.

A binding is instantiated by nominating a Finesse pro-
gram (or some compiled form) and a set of components to
fulfil the roles of the binding. The underlying distributed
infrastructure is required to establish an appropriate set of
network connections and supporting components to imple-
ment the Finesse program. A Finesse program can be used
to generate stubs for the participating components in a sim-
ilar manner to CORBA IDL, meaning that Finesse is some-
what independent of the language used to build the partic-
ipating components.

2.2 Behavioural Model

Event relationships provide the basis for describing behaviour
in bindings. Event relationships capture the dependencies
between events at the interfaces of software components par-
ticipating in a distributed application. Three distinct types
of event relationship are identified:

Causal relationships which describe the causal dependen-
cies between events;

Parameter relationships which describe the relationships
between parameters of causally related events. Param-
eter relationships define the content of messages passed
between interacting components, but in a declarative,
application-oriented manner;

Timing relationships which describe any real-time rela-
tionships between events. These relationships can be
used to describe, for example, timeouts or quality of
service requirements of interactions.

These concepts, combined with the notions of binding in-
terface and role, provide an extremely powerful technique for
the description of distributed systems interaction. For ex-
ample, it is possible to succinctly describe and easily extend
remote procedure call, group communication, and stream
behaviour. The ability to describe arbitrary interaction mod-
els and parameter relationships gives considerable openness
and allows the integration of legacy systems. The semantic
model described in [12] also includes powerful facilities for
abstraction and composition of these behaviours, although
only some of those capabilities are visible in Finesse.

3 Finesse Syntax

3.1 Structure of a Finesse Program

A Finesse program, also called a binding has an outer scope
introduced by the keyword Binding and the name of the
binding, followed by a set of Import statements, and two
sections defining roles and interactions. Roles define the
required behaviour of participating components, and Inter-
actions define the relationship between events at different

roles. Braces are used to delimit sections. Note that in the
following examples, ellipses (...) are used to avoid includ-
ing unnecessary detail and are not a syntactic construct.
The basic structure is thus:

Binding Example {
Import ...;
Roles {

)

Interactions {

L
}

3.2 Describing Roles and Interactions

A binding has one or more role definitions, introduced by
a role name. A role definition can be prefixed by a cardi-
nality constraint enclosed in square braces, which constrains
the number of components that can fulfil a role. The place-
holder # represents the actual cardinality. Where no cardi-
nality constraint is given, the default cardinality is exactly
one, for example:

Roles {

Client { ... }

[#>=1] Server { ... }
}

This specifies that there are two roles, Client and Server
and that there is exactly one Client and at least one Server
in the binding.

The Interactions specification defines relationships be-
tween events occurring in the roles. Events are referred to by
the role name, followed by a period ’.” and the event name.
This reference to an event can also have a cardinality con-
straint to deal with situations where multiple components
fill the role. For example:

Binding Example {
Import ...;
Roles {
Client { send! }
[#>=1] Server { receive? }
}
Interactions {
Client.send -> [#=all] Server.receive

}

The place-holder # in the Interactions specification refers
to the number of components executing the event, while the
place-holder all refers to the number of components fulfill-
ing the role. In the above example, the client role executes
a send event followed by all servers executing the receive
event. In other words, this binding is a high-level descrip-
tion of reliable multicast. As with role cardinality, event
execution cardinality defaults to exactly one.

Roles can contain named actions that group together a
set of events and allow the Interactions section to refer to
some subset of the role when defining interaction behaviour,
for example:

Binding {
Roles {
Client {



read { send -> receive } -> write { ... }

}
Interactions {
Client.read ...

}

Named actions define a scope for event names, allowing
the role and interaction definitions to distinguish between
same-named events. Interactions can also contain named
actions to support inheritance and overriding.

3.3 Events and Event Relationships

The behaviour within roles is defined by events and their
relationships. An event is introduced by a name, a direction
indicator, and a parameter list, for example:

el (x:tl; y:t2)

where e is the event name, ! indicates that it is an output
event, x,y are the event parameters, and t1,t2 are the data
types of the parameters. Events are uni-directional, that is,
they can be input events or output events but not both. The
7 character is used in place of the ! to indicate an input
event.

Event relationships are used to define causality, param-
eter and timing relationships between events in the role.
Causality defines a partial order and is specified with the =>
operator, for example:

el!(x:tl) -> e27(y:t2)

This specifies that event el must complete before event
e2 begins. The -> operator is transitive and antisymmetric.
Events not related by the causal order an occur in any order
and may even overlap in time if that is physically possible.

An event can be followed by a specification of its param-
eter relationships. The specification places constraints on
the values of the parameters. For example:

el!(x:tl; y:t2) -> e27(z:t3) {z = f(el.x)}

Parameter relationship specifications can refer to any
identifiable, causally preceding event. There is no require-
ment that all parameters of any output event must be con-
sumed by an input event, and the parameters of an output
event can be used many times. In the general case illus-
trated here, parameter relationships are functional, allowing
for transformation of data. For all parameter relationships,
the function or operator used must be well-defined for the
data types of the parameters. This means, for example,
that equality (=) can be used for parameters of different
types provided it is well defined in the context of the bind-
ing. Due to its common use in RPC systems, Finesse has
shorthand syntax for name equivalence of parameters, that
is:

el!(x:tl; y:t2) -> e2?7(x:tl; y:t2) {*= el}
This specifies that all parameters of e2 are assigned the
value of the same-named parameter of el. Non-deterministic

parameter relationships can also be specified, for example:

el!(i:seqnr) -> e2!(i:seqnr) {e2.i > el.i}

In order to simplify event identification, the keyword
prev can be used to refer to the immediately preceding event
in the current specification context.

Events can have guards. Guards are logical expressions
that must evaluate to true for the event to occur. Timing
constraints are included in Finesse programs through guards
and the provision of three built-in functions: start, end and
now. Start and end take an event name as a parameter
and return the time when that event started or ended re-
spectively. Now returns the current time. For example:

el!() -> [now - end(el) < 10.0] e27()

This specifies that the event e2 must start within 10 sec-
onds of el completing. Absolute time is extremely difficult
to represent and measure accurately in distributed systems,
so guards involving time are only permitted to compare time
deltas. Literal values of time are represented as a real num-
ber indicating a number of seconds. Implementations of Fi-
nesse must allow for clock skew when evaluating time guards
involving events at different locations.

3.4 Composing Event Relationships

Finesse has three primary composition operators for joining
event relationships:

AND is a logical AND of two specifications, synchronising
on same-named events and actions;

OR is a logical OR of two specifications, synchronising on
same-named events and actions;

XOR is a logical exclusive OR of two specifications.

Synchronisation of events and actions means that they
become the same occurrence of the event or action, and im-
plies that their parameters and any ordering must be iden-
tical.

3.5 Inheritance and Subtyping

Finesse supports inheritance as a means of code reuse, and
explicit specification of subtype relationships with the im-
plements keyword. For example:

Binding Example inherits ExampleParent
implements ExampleBehav {...}

The inherits keyword instructs Finesse to include the
imports, roles, and interactions of the parent in the child.
Roles and named actions defined in the child override same-
named roles and actions in the parent. The remaining in-
teraction behaviour is composed with a logical AND.

The implements keyword is intended to allow specific
implementations of a high-level behaviour, for example, both
CORBA and DCE implement remote procedure call (RPC)
that would be semantically equivalent for many applications.
A high-level Finesse program for RPC could potentially be
replaced with either implementation. Although a complete
complexity analysis has not yet been attempted, it is be-
lieved infeasible to automatically check subtyping specified
with the implements keyword. Simple checks for compat-
ibility will be able to detect certain types of incompatibili-
ties, however, final responsibility for the correctness of the
subtyping lies with the programmer.



3.6 Reuse and Generics

The Import keyword allows role and binding definitions to
be re-used in the current Finesse program. It is followed
by the name of a Finesse program to import. In the sim-
ple case, role and binding definitions are re-used without
parameterisation, for example:

Binding Message {
Roles {
Sender {send!(x:t1)}
Receiver {receive?(x:t1)}
}
Interactions {
Sender.send -> Receiver.receive {*=Sender.send}
}
}

Binding UseMessage {
Import Message;
Roles {
Send2 {sendl {Sender} -> send2 {Sender}}
Recv2 {recvl {Receiver} -> recv2 {Receiver}}
}
Interactions {
Message(sendl, recvl) AND
Message (send2, recv2)

}

The roles of the Message binding are used to define two
actions each in the Send2 and Recv2 roles respectively. The
interactions section of the UseMessage binding simply binds
those actions together using the Message binding. While
this can be useful, the ability to parameterise roles with
arbitrary parameter lists give more flexibility, for example:

Binding Message {
Roles {
Sender (MSG) {send! (MSG)}
Receiver (MSG) {receive?(MSG)}
}
Interactions {
Sender.send -> Receiver.receive {*=Sender.send}
}
}

Binding UseMessage {
Import Message;
Roles {
Send2 {sendl {Sender(x:t1)} ->
send2 {Sender(y:t2)} }
Recv2 {recvl {Receiver(x:t1)} ->
recv2 {Receiver(y:t2)} }
}
Interactions {
Message(sendl, recvl) AND
Message (send2, recv2)

}

This allows us to reuse the interaction behaviour with
different event parameter lists, allowing definition of bind-
ings such as generic RPC or multicast.

3.7 lteration

Iteration in the presence of concurrency requires two sepa-
rate iteration semantics; one for dependent (sequential) it-

eration and one for independent (parallel) iteration. In Fi-
nesse, both of these take the form of a postfix operator on
an action or event. The *+ operator indicates that the ac-
tion or event should be repeated with a causal dependency
on previous executions. The *- operator indicates that the
action of event should be repeated with no dependency on
previous executions. For example:

Binding Example {
Roles {
Consumer { consume?(x:tl) *+ }
Producer { produce!(x:tl) *- }
}
Interactions {
{Producer.produce -> Consumer.consume} *-

}

This specifies a binding containing producer and con-
sumer roles. The consumer can only consume one data item
at a time, while the producer can produce many data items
in parallel, and each produce event results in a correspond-
ing consume event.

4 Example Programs

The following example programs, while not exercising all
features of Finesse, introduce the language and demonstrate
its strengths. The first four examples illustrate how Finesse
succinctly handles the transition from two-party to multi-
party interaction, and the final example shows the use of
time constraints with stream behaviour.

4.1 Generic RPC

This Finesse program describes a generic RPC interaction
with two roles, client and server. The Roles section defines
the behaviour of the participants. The Interactions section
defines the relationship between the roles. A set of required
messages and hence appropriate network connections can be
derived from the behaviour.

Binding RPC {
-- generic RPC

Roles {
-- the client role is parameterised by a set
-- of input and output values
Client(IN, 0UT) {
-- the client executes a send (output)
-- followed by a receive (input)
send! (IN) -> receive?(0UT)
}

-- the server role is similarly parameterised
Server (IN, 0UT) {
-- the server receives then sends
receive? (IN) -> send! (0OUT)
}
}

Interactions {
-- the client send causes the server to
-- receive, with parameters matched by name
Client.send -> Server.receive {*= prev} AND



-- the server send causes the client to
-- receive, with parameters matched by name
Server.send -> Client.receive {*= prev}

}
}

4.2 Using RPC

Use of the generic RPC binding is demonstrated in the fol-
lowing binding definition for file input/output:

Binding FileID {
-- read-only file access using RPC

Import RPC;

Roles {
-- Client and Server implement open/read/close
Client {
open {RPC.Client ((string name),
(handle fh))}
-> read {RPC.Client
((handle fh, int bytes),
(buffer buf, int bytes))} *+
-> close {send! (handle fh)}

}
Server {

open {RPC.Server ((string name),

(handle fh))}
-> read {RPC.Server
((handle fh, int bytes),
(buffer buf, int bytes))} *+

-> close { receive?(handle fh) }

}

}

Interactions {
-— Client operations result in corresponding
-- server operations.
RPC(Client.open, Server.open) ->
RPC(Client.read, Server.read) *+ ->
Client.close -> Server.close {*= prev}

4.3 Multicast RPC

The original RPC binding can be extended to support mul-
ticast RPC. The client and server roles are unmodified, al-
lowing the original client and server to be used:

Binding MultiRPC {
Import RPC;

Roles {
Client { RPC.Client }
-- the cardinality constraint specifies that
-- there must be at least one server.
[#>=1] Server { RPC.Server }
}

Interactions {
-- a client send causes all servers to receive
Client.send -> [#=all] Server.receive {*= prev}

-- however, only one of the responses causes a
-- result to be delivered to the client.
[#=1] Server.send -> Client.receive {*= prev}
X
}

This example introduces cardinality constraints associ-
ated with roles and their behaviour. All roles in a binding
can potentially be filled by many participating objects. By
default, a role is filled by only one participant. The addition
of an appropriate cardinality constraint allows a role to be
filled by multiple participants. This use of cardinality con-
straints provides a convenient and powerful mechanism for
describing group communication.

4.4 Using Multicast RPC

A replicated file access binding shows how the multicast
RPC binding can be used:

Binding ReplFileID {
-- replicated, read-only file access

Import MultiRPC, FilelO;

Roles {
-- Client and Servers reuse open/read/close.
—-= Only Server cardinality has changed.
Client { FileID.Client }
[#>=1] Server { FileI0.Server }

}

Interactions {
-- RPCs by client are multicast to servers
MultiRPC(Client.open, Server.open) ->
MultiRPC(Client.read, Server.read) *+ ->
Client.close -> [#=all] Server.close {*= prev}
}
}

This set of examples demonstrates how a basic interac-
tion mechanism can be extended to suit new requirements.
Notice in particular, that clients and servers are unchanged
despite the change in interaction mechanism. This suggests
significant potential for reuse and legacy application inte-
gration.

4.5 Stream Communication

The following generic stream binding demonstrates how Fi-
nesse can be used to describe quality of service require-
ments, including time-related constraints. While this bind-
ing describes only two-party interaction, it can be extended
for multi-party stream interaction in manner similar to the
multi-party RPC.

Binding Stream {

Roles {
Producer (DATA) {
-- sending with sequence number generation
(send! (seqnr, DATA) ->
[seqnr=prev.seqnr+1] send!(seqnr, DATA))x*+



Consumer (DATA) {
-- receiving with correct ordering but
-- allowing for loss of a packet of data
-- between successful transmissions and
-- requiring a minimum frame rate of 1
—-- frame/sec
{receive?(seqnr, DATA) ->
[seqnr - prev.seqnr < 2;
seqnr > prev.seqnr;
now - end(prev) < 1.0]
receive?(seqnr, DATA)} *+
X
¥

Interactions {
-- basic streaming transmission behaviour.
-- Note that producing the next element of the
-- stream is not dependent on the receipt of
-- the previous element, hence the ’*-’. Also
-- note that not all produced events must be
-- received, allowing lossy behaviour.
{Producer.send -> Consumer.receive {*= prev}
XOR Producer.send} *-

5 Discussion

5.1 Novel Features

Finesse has a number of features that are novel in coordina-
tion languages. Of particular interest is the abstraction that
it provides over messaging. Messaging is implied by declar-
ative relationships between events, meaning that a compiler
or interpreter can optimise the number and content of mes-
sages transferred between components. The use of explicit,
but abstract, parameter relationships allow parameters to
be ignored if not used. The use of causality relationships
allows parameters from multiple events to be combined into
a single message from a particular interface where appropri-
ate.

Openness and flexibility is enhanced by allowing arbi-
trary parameter relationships. This can allow, for example,
a DCE RPC client to call a CORBA server, provided the
appropriate infrastructure and transformation functions are
in place. The Finesse language has no structural knowl-
edge of data types, freeing it from the confines of a specific
data model. The use of functional relationships between
parameters also provides good support for including legacy
components and applications in a Finesse binding.

The inclusion of time constraints is both novel and very
useful. Such constraints can be used to explicitly specify
timeouts and associated behaviour, or to describe quality of
service constraints on, for example, the delivery of multime-
dia streams.

5.2 Open Issues

There are a number of open issues associated with the syntax
and semantics of Finesse. These are summarised as follows:

e Finesse has a terse syntax that is not especially friendly
for first-time programmers. This keeps the language
and its programs small, but it might be appropriate to
introduce more familiar syntax, particularly for itera-
tion and control structures, for example, if-then-else

or while constructs. Such changes are being consid-
ered for future versions of the language, although the
presence of concurrency complicates the semantics.

e It is often most appropriate to represent concurrency
graphically to make non-linear (i.e. split and join) de-
pendencies clearer. There is also some merit in pro-
viding a graphical “plumbing toolkit” containing com-
monly used generic bindings like streams and RPC.
A graphical programming environment based on these
ideas would allay concerns about the terseness of Fi-
nesse, allowing programmers to use this environment
for most programs. There is an ongoing interest in
providing such tools for Finesse.

e Finesse does not currently allow predefined event or
action types. These could for example, be used in a
macro fashion to define commonly used event signa-
tures or patterns of behaviour. A similar effect can
be achieved by importing bindings defining roles with
appropriate event and action definitions, but future
versions of Finesse might include explicit support for
event and action types.

e Finesse does not support a structured data model. For
openness and flexibility, it leaves the management of
data and types to the connected components. In order
to support rudimentary type checking and transforma-
tion of data, parameters are associated with a type
name. Functional transformations of data must be
supplied by the infrastructure and may or may not be
dependent on type names. Such an unstructured ap-
proach to data typing is unpopular in some circles, and
experience with Finesse might suggest a more struc-
tured approach in future versions.

e One of the difficulties associated with roles is describ-
ing behaviour for roles with a cardinality greater than
one. For example, how do you describe a multicast
RPC that chooses the response with the highest ver-
sion number? Finesse cannot deal with such situations
at present, so the component must implement these
semantics. The most likely approach is to allow pa-
rameter relationships to operate on event sets as well
as individual events.

e When composing specifications from different sources,
there are sometimes situations where you want to syn-
chronise on events having different names. This is not
currently possible with Finesse. Two possibilities are
being considered to address this issue: either renaming
or a set of explicit synchronisation primitives.

e Finesse currently does not support reflection or evolu-
tion of behaviour. While theoretically possible, imple-
mentation is difficult because of the need to implement
dynamically specified parameter relationships and the
subsequent need to store all causally accessible param-
eters at all times.

A formal semantics for Finesse is partially complete, and
is being used to assist in developing a prototype implemen-
tation. The prototype is being implemented over Hector[2],
a distributed systems infrastructure based on the principles
of the A1,/ model[3]. Hector supports the majority of the
Finesse semantics, including multi-party bindings, flexible
interaction mechanisms, and an open data model. Compila-
tion of Finesse programs requires the translation of Finesse
code into program stubs and an executable Hector binding
description.



5.3 Related Work

Coordination languages are quite varied in their strengths
and features. The earliest attempts at distinguishing co-
ordination from computation were based on Linda[5] and
a number of variants are still in active use, indicating the
power of the shared tuple-space approach. These systems
have the advantage of a simple, yet powerful model of com-
munication. Finesse lacks this simplicity but has a number
of advantages, in particular the ability to abstract over com-
munication in a way that can be optimised, and the ability to
capture coordination protocols and build increasingly high-
level abstractions of that coordination.

More recently, a number of coordination languages have
been based on the idea of building a network of connections
between ports and/or interfaces, as is done by ConCoord[6]
and Manifold[1]. ConCoord in particular has powerful ab-
straction capabilities and language independence. The pri-
mary difference between these languages and Finesse is that
Finesse does not use explicit connections between interfaces,
with the causal and parameter relationships allowing the op-
timisation of messaging and message contents. This does,
however, introduce additional complexity that might not be
desirable. Neither the connection based languages or the
shared tuple-space languages support real-time constraints
to the extent supported by Finesse.

Darwin[11] is a language for describing the static, struc-
tural connections of a set of components without explicitly
describing their behaviour. Coupled with a distinct com-
ponent specification language, for example that used in [9],
it can be used to describe similar behaviour to Finesse. It
does not distinguish between components that perform com-
putation and components that connect other components
(i.e. bindings). In many systems this is quite appropri-
ate, however, the failure and execution model of software
components running on a single computer system is quite
different from that of the network connections supporting
the interconnection of those components, suggesting a dis-
tinct language like Finesse is preferable in open distributed
systems.

Finesse is most similar to Rapide[10], an architecture de-
scription language based on posets (partially ordered sets of
events). Rapide is intended as a simulation language for
software engineering. It is event-based, with a true concur-
rency model based on causality, and uses event patterns for
abstraction and synchronisation. Rapide also has extensive
support for real-time constraints. Finesse differs most from
Rapide in the way abstraction is handled, and in its data
model, since Rapide has a fixed, structured data model.

6 Conclusion

This paper has described Finesse, a coordination language
for open distributed systems. A Finesse program or binding
describes the roles of components in a distributed applica-
tion and the interactions between those roles. Roles and
interaction are described using event relationships, in par-
ticular, causality (ordering), parameter and timing relation-
ships. Finesse has strong support for group communication
and provides abstraction through structuring and composi-
tion features. The examples presented in this paper suggest
that Finesse can succinctly describe a wide variety of coor-
dination protocols in a flexible and easily reusable manner.

The key advantages of Finesse over existing coordination
languages are: its abstraction of communication; its open,
unstructured data model; and its support for real-time con-

straints. It does suffer to some extent from the complexity
and unfamiliarity of these features, but offers a powerful,
alternative approach to the problem of coordination in open
distributed systems.

References

(1] F. Arbab. The IWIM model for coordination of concur-
rent activities. In Coordination Languages and Models,
number 1061 in Lecture Notes in Computer Science.
Springer, 1996.

[2] D. Arnold, A. Bond, M. Chilvers, and R. Taylor. Hec-
tor: Distributed objects in python. In Proceedings of the
4th International Python Conference, Livermore, Cali-
fornia, June 1996.

[3] A. Berry and K. Raymond. The Aly/ architecture
model. In Open Distributed Processing: FExperiences
with distributed environments. IFIP, Chapman and
Hall, February 1995.

[4] G. Blair and T. Rodden. The challenges of CSCW for
Open Distributed Processing. In Open Distributed Pro-
cessing, II. IFIP, North Holland, 1993.

[6] N. Carriero and G. Gelernter. Linda in context. Com-
munications of the ACM, 32(4):128-139, April 1989.

[6] A. A. Holzbacher. A software environment for concur-
rent coordinated programming. In Coordination Lan-
guages and Models, volume 1061 of Lecture Notes in
Computer Science. Springer, 1996.

[7] ISO/IEC 10746-1 10756-2 10746-3 10746-4 Basic Ref-
erence Model for Open Distributed Processing.

[8] Simon Kaplan, Geraldine Fitzpatrick, Tim Mansfield,
and William J. Tolone. MUDdling through. In Proceed-
ings of the Thirtieth Annual Hawaii International Con-
ference on System Sciences: Information Systems—
Collaboration Systems and Technology, 1997.

[9] J. Kramer and J. Magee. Exposing the skeleton in the
coordination closet. In Coordination Languages and
Models, number 1282 in Lecture Notes in Computer
Science, pages 18-31. Springer, September 1997.

[10] D. C. Luckham and J. Vera. An event based architec-
ture definition language. IEEE Transactions on Soft-
ware Engineering, September 1995.

[11] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Spec-
ifying distributed software architectures. In Proceedings
of the 5th European Software Engineering Conference,
September, 1995.

[12] A. Rakotonirainy, A. Berry, S. Crawley, and Z. Milo-
sevic. Describing open distributed systems: A foun-
dation. In Proceedings of the Thirtieth Annual Hawaii
International Conference on System Sciences: Software
Technology and Architecture, 1997.

[13] K. Raymond. Reference Model of Open Distributed
Processing (RM-ODP): Introduction. In Open Dis-
tributed Processing: Ezxperiences with distributed envi-
ronments. IFIP, Chapman and Hall, February 1995.



