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Abstract. LLM-powered AI agent systems are bringing new perspectives
to enterprise design, operations, and computing (EDOC), particularly in
environments where agents can act autonomously and independently,
referred to as agentic systems. These capabilities unlock new opportuni-
ties for automation, enabling agents to perform intellectually demanding
tasks that were previously reserved for humans, while still allowing hu-
man oversight of key decisions. However, a critical challenge remains:
ensuring clear accountability within these systems across humans and AI
Agents, which may involve complex chains of authorization and delega-
tion. As individual agents act independently, pinpointing responsibility
becomes increasingly difficult. This paper proposes a novel solution to
this problem: a domain-specific language (DSL) based on the ISO ODP
Enterprise Language standard, precisely defining the roles and interac-
tions between actors in the enterprise landscape. The DSL is implemented
using textX, a contemporary tool-chain which provides rapid prototyping
ecosystem. The aim is to provide user-friendly syntax while following the
precise semantics of ODP enterprise language.
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1 Introduction

AI Agents, including Generative Agent systems [22] are transforming the
way enterprises function by automating complex tasks and enabling real-time
decision-making. By leveraging Large Language Models (LLMs), these systems
foster enhanced communication and collaboration between multiple intelligent
agents. This collaboration unlocks the potential for novel and efficient solutions
to complex enterprise tasks. However, a critical challenge remains: ensuring a
clear chain of responsibility within these multi-agent systems. As these systems
become more sophisticated, and individual agents exhibit increasing levels of
agency (acting autonomously within their environment), pinpointing account-
ability for actions and decisions becomes increasingly complex.

While significant previous research has focused on communication protocols
and coordination mechanisms within multi-agent systems prior to their use of
LLMs [4,9], ensuring a clear chain of responsibility has received less attention.
Existing approaches often rely on centralized control structures or pre-defined
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rules for task allocation, without considering the intricacies of social environ-
ment, such as accountability arising from the organisational or legislative rules.
These methods do not provide flexibility in adapting to the dynamic nature of
enterprise environments and the growing autonomy of agentic systems.

This paper addresses this critical gap by proposing a novel solution: a
domain-specific language (DSL) developed to support enterprise design and
operation activities, while placing special attention on the accountability con-
cepts. This DSL can be used to express accountability rules for the enterprise
which includes AI agents and multi-agent capabilities, and provide rapid imple-
mentation of required monitoring and enforcing capability. This DSL leverages
the precise semantics of the ODP Enterprise Language (ODP-EL) standard [10],
allowing for a clear and unambiguous definition of roles, responsibilities, and
decision-making authority within a multi-agent system. The ODP-EL standard
brings credibility but also pragmatic approach to building interoperable dis-
tributed systems and by utilizing this DSL, enterprises can design and deploy
collaborative AI systems with a well-defined chain of responsibility, fostering
trust, transparency, and legal clarity.

Next section provides an overview of related work. This is followed by a
brief introduction of multi-agent and agentic AI systems, section 3. Key ODP En-
terprise Language concepts are outlined in section 4. The description of our DSL
implementation of related ODP-EL concepts is in section 5. Section 6 provides
an overview of the integration of DSL tooling with one specific AI agent archi-
tecture and discusses some challenges from our implementation. Conclusions
and directions for future work are summarized in section 7.

2 Related Work

The problem of designing enterprise structure and behaviour has been subject of
many research and industry efforts. Much of the recent research contributions
come from various enterprise ontology efforts, the most prominent being a
series of proposals from the UFO community, of which UFO-L extension is
particularly related to this work [8]. Another example is Open Digital Rights
Language (ODRL) [23], which is used to represent permitted and prohibited
actions over a certain asset, as well as the obligations required to be met by
stakeholders. These ontologies and modelling languages provide an excellent
conceptual foundations for expressing key concepts and relationships related
to enterprise structure, and have provided insights into our current work.

Further influence comes from our earlier DSL efforts related to Business
Contract Language (BCL) [15,17], which was based on the previous version of
ODP-EL standard. BCL has similarity with our current DSL efforts, in terms of
its focus on developing an implementable language. Current ODP-EL standard
however provides more expressive set of concepts which includes a precise
framework of expressing delegations and obligations in a way which are more
amenable for the distributed system implementations. This, along with the
increasing requirements to better modelling of policy frameworks in digital
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health, where much of our recent industry efforts were involved, motivated us
to use the latest version of he ODP-EL as a source of our DSL.

Much of the work above is related to the enterprise objects that model key
entities in a system, of which computational agents represent subset of these.
The agentic AI solutions are recent development and much focus there was
on how to best structure an LLM-based application in terms of the roles un-
dertaking dedicated tasks, with limited current success in supporting planning
and collaboration [21]. AI agent architectures are currently concerned with the
structure of single AI agents, leaving the communications among agents to
the underlying LLM and relevant tools, to support the expression of agent’s
reflection, planning and collaboration, as demonstrated in the recent work on
computational software agents that simulate believable human behavior [22].
Some earlier work has investigated the computational agents in a distributed
environment, as for example the Siebog Multi-Agent System [19] where agents
can be specified using ALAS DSL [24].

However, the problem of expressing policy constraints over agents actions
in distributed systems is currently not addressed and our contribution is to
provide architectural positioning of the formalism of deontic and accountability
concepts to be integrated with agentic developments, leveraging mature and
pragmatic framework from the ODP-EL.

3 Agent AI systems

3.1 Agent AI architectures

Agent AI systems have recently emerged as a vehicle of making better use of
LLM models in support of specific, AI enabled enterprise tasks. They allow
complex tasks to be decomposed into smaller units, i.e. actions, such as in
complex activities of writing software or providing financial or health related
advice to consumers. Each of these actions can in turn be implemented by a
separate, dedicated agent. The actions can include prompting of LLM models
in an iterative fashion, invoking tools for specific functions by a single agent, or
multiple agents. Some architectures, such as crewAI [20] include mechanisms
for delegating actions to other agents who would execute more specific tasks
or for farm-out other tasks for resource allocation reasons. A key new quality
here is to replace the current’s LLM’s zero-shot prompt with a sequence of
steps undertaken by a single or multiple agents, sometimes referred to as agent
workflow, which as experience shows, produces better results than the zero-shot
approach. This task decomposition also influences the properties of the agent
AI architectures, recently described in terms of the four design patterns [21]:

– Reflection, where a LLM examines its own work to come up with ways to
improve it, which may involve creating its own memory stream for this[22].

– Tool Use, where a LLM exploits tools such as web search, code execution,
or other functions to help it gather information, take action, or process data.
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– Planning, where a LLM creates and executes a multi-step plan, e.g. writing
an outline for an essay, then doing online research, then writing a draft.

– Multi-agent collaboration, where multiple AI agents work together, decom-
posing a complex task and discussing and debating ideas, to come up with
better solutions than a single agent would [22].

There are a number of variants of how these patterns can be implemented. In
some cases the focus is on their communication and collaboration, with limited
autonomy [26,20], while at the other end of spectrum is supporting autonomous
decision-making [22]. It should be noted that LLM-based AI agents are not yet
designed for distributed environments .

3.2 Policy Constraints Considerations

Ethical, regulatory, and policy considerations are crucial aspects to consider
when designing any AI system, including the Agent AI systems. These can be
summarised in the context of the following requirements:

Ethical Considerations

– Bias and Fairness: it is essential to ensure AI systems are trained on unbiased
data and designed to avoid discriminatory outputs. Techniques like fairness
checks and diverse datasets are crucial.

– Transparency and Explainability: this is referred to a need to understand
how AI systems reach their decisions; for example, in agentic workflows,
this might involve explaining the actions and choices of AI agents, and for
generative agents, transparency in content generation is important.

– Human Control and Oversight: While agentic AI and generative agents
exhibit agency, it is crucial to maintain human control over their actions and
outputs. Clear guidelines and safeguards are necessary.

Regulatory and Policy Constraints

– Data Privacy: The Agent AI systems might involve handling personal data.
Regulations like GDPR [5] need to be followed when collecting, storing, and
using such data.

– Accountability: Assigning responsibility for the actions of AI systems is
crucial, such as identifying who is legally accountable for decisions made
by agentic AI systems or the outputs of generative agents.

– Safety and Security: Security measures are essential to prevent malicious
actors from manipulating AI systems. Safety measures should ensure that
AI agents do not pose a risk to users’ physical or psychological well-being.
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Enterprise Design and Operations Considerations Ethical considerations, reg-
ulations, and policies should be integrated from the early stages of the design
process for agent AI systems, and the experience with the operations of such
system can also inform better integration of policy considerations [16].

Our approach to these requirements is to consider well developed semantics
from the ODP-EL in a technology neutral way so that it can be integrated with
various architecture approaches. While ODP standard has provided many in-
puts to various distributed systems and architectures [13], less is known about
the expressive power of the ODP Enterprise Language [10], its foundation in de-
ontic concepts, and pragmatic translation of these into implementable software
artifacts. Our approach is to express these foundational concepts in a program-
ming language independent framework using modern DSL technologies and
tooling, such as Xtext [27] and textX [3], as will be discussed in section 5.

3.3 Human and AI Agent interactions — tracing accountability

As enterprise applications become more complex, they increasingly involve
a mix of human and automated actors, including AI agents, as introduced
above. While AI’s replacement of human actors may not change the essential
behavioural characteristics of the tasks performed, this integration raises critical
accountability questions, particularly regarding legal responsibility in human-
AI interactions.

Humans can take on two roles in the world of AI [17]. They can be AI
creators, designing agents to achieve specific goals and deliver value, as for
example developers structuring crewAI application. Alternatively, they can be
users who engage existing agents to perform tasks on their behalf, potentially
even delegating decision-making authority. Delegation is the first class concept
in the principal-agent relationship in economics and law, where one party hires
another to act on their behalf. We note that it is also possible for AI agents to
delegate their tasks to other AI agents, potentially passing authorisation that
was created by their originating principals.

The concepts of authorization, delegation, principal and agent are some of
the key accountability modelling concepts defined in the ODP-EL standard [10]
and built based on the precise expression of behavioural constraints over actions
of objects in the system, and we will use them as a basis for our DSL. We note that
the ODP-EL, as other ODP languages, are defined in an abstract way, without
commitment to any notation [13], although the ODP family of standards include
separate, UML based expression, referred to as UML profile for ODP [2]. Next
section provides a summary of some of the key ODP-EL concepts which we use
within our DSL.

4 Key ODP Enterprise Language concepts

4.1 Community

The ODP Enterprise Language (EL) defines the organizational, business and
social context in which an IT system is designed, deployed and operated. The
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main structuring concept here is that of a community, which is a grouping
of interested parties to collaborate and satisfy their own and the objective of
the community. The objective is defined as a "practical advantage or intended
effect, expressed as preferences about future states"[10], emphasising the need
to express the objective in measurable terms.

Party is defined as an enterprise object modelling a natural person or any
other entity considered to have some of the rights, powers and duties of a natural
person [10]. Examples of parties include enterprise objects representing natural
persons, legal entities, governments and their parts, and other associations or
groups of natural persons. It is important to highlight that parties are responsible
for their actions and the actions of their agents.

Therefore, parties, such as IT system providers, service providers and cus-
tomers, along with the automated systems that support their activities, can
participate in a community. Note that the ODP uses the term active enterprise
object to model an enterprise object that can be involved in some behaviour.
So, community is defined through a community contract, which specifies roles
in the community and their expected behaviour to be fulfilled by parties or IT
systems (i.e. active enterprise objects), along the constrains on that behaviour.
These constraints are typically expressed in terms of rules, such as permissions,
prohibitions, obligations and authorisations. There can be also rules that ap-
ply across several roles in a community such as the constraints that support
separation of duty policies.

A complete enterprise language specification would typically involved sev-
eral communities, which can be nested or federated (this forming a larger com-
munity) and parties can fulfill roles in a number of communities. The use of
community pattern supports design re-usability, so that many different parties
can participate in the community in one or several instances of communities,
instantiated from the community contract (as a template). A community can
also evolve, by dynamically adding another role or policy rules.

4.2 Deontic tokens

The ODP-EL considers obligations, permissions and prohibitions, known as
deontic concepts, as fundamental constraints over behaviour of parties. Their
semantics is grounded in the deontic logic and normative systems formalism
but the standard takes a pragmatic approach to handling these constraints, by
applying them to the actions of roles in the community, and thus the object
that fulfill them. This is done through bringing the concept of a deontic token
which encapsulates these deontic constraints as introduced in [14] and further
specified in the standard [10].

The holding of the deontic tokens by active enterprise objects constrains their
behaviour. This modelling approach provides a basis for manipulating deontic
tokens, for example, passing them between parties to model delegations, and
activation or de-activation of policies that apply to the active enterprise objects
interactions.
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Three types of deontic tokens encapsulate deontic constraints. These are
called: burden — representing an obligation, permit — representing permission,
and embargo — representing prohibition. In the case of a burden, an active
enterprise object holding the burden must attempt to discharge it either directly
by performing the specified behaviour or indirectly by engaging some other
object to take possession of the burden and perform the specified behaviour.
In the case of a permit, an active enterprise object holding the permit is able to
perform some specified piece of behaviour, while in the case of an embargo, the
object holding the embargo is inhibited from performing the behaviour.

It is to be noted that some actions, referred to as performative actions, change
the state of the system, such as when one party has authorized another party
to do actions on their behalf. In ODP-EL, these actions are referred to as speech
acts, and they indicate when an action will modify the set of tokens held by
the enterprise objects in questions [14,10]. This supports the description of the
chain of obligations, permissions or prohibitions across the parties and active
enterprise objects, such as AI agents, which we are using in this paper.

Deontic tokens have similarity with the widely used security tokens imple-
mentations, such as access tokens in OAuth2.0, and with new OAuth 2.0 Token
Exchange specification [12] providing further capabilities for secure exchange
of tokens, including support for delegation, as will be discussed in section 6.2.

4.3 Accountability actions

While deontic constraints are important as a way of implementing constraints
over system actions, such as for example in access control, or monitor obliga-
tions associated with contracts or compliance regulations, there is further benefit
in providing high level of abstraction that are more directly related to the ex-
pression of social or organizational responsibility. For that purpose, a family of
concepts for expressing responsibility is introduced, called accountability con-
cepts. They support traceability of obligations in the overlapping and interacting
communities that form the enterprise, allowing linking the rights and responsi-
bilities of parties to the individual system actions and their consequences [13].

The concept of party is introduced above and it is significant to note that
parties can have intentions and are accountable for their actions [10]. Those
actions that involve accountability, identified by ODP-EL, are listed next.

Authorization is an action indicating that a particular behaviour shall not be
prevented. Unlike a permission, an authorization is an empowerment. The fact
that an enterprise object has performed an authorization is expressed by it issu-
ing a required permit and itself undertaking a burden describing its obligation
to facilitate the behaviour.

Delegation is the action that assigns something, such as authorization, re-
sponsibility or provision of a service to another object. The ODP-EL adopts the
language from agency theory to refer to the delegated object as an agent, and to
a party that has delegated something (e.g. authorization or provision of service),
as a principal. The agent is modelled as an active enterprise object that has been
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delegated something by, and acts for, a party (e.g. in exercising the authoriza-
tion, carrying out responsibility). A principal is responsible for the actions of an
object acting as an agent. We note that this object can in turn further delegate
to another object, if authorised by the principal, thus forming another linked
delegation. The first enterprise object in that chain of delegations is the party
that is the root of accountability.

Commitment is defined as an action resulting in an obligation by one or more
participants in the act to comply with a rule or perform a contract. This effectively
means that they will be assigned a burden. Examples include commitments by
clinicians to deliver safe, reliable and effective healthcare to patients.

Declaration is defined as an action by which an object makes facts known in
its environment and establishes a new state of affairs in its environment. This
can, for example, be performed by an AI system (or a party managing it), for
example, informing the interested parties about the result of some analysis.

Evaluation is defined as an action that assesses the value of something, which
can considered in terms of variables such as importance, preference, usefulness.

Figure 1 shows deontic concepts as primitive constraints over behaviour, and
the accountability concepts as an abstraction built on top of deontic concepts.

Fig. 1. Accountability and deontic concepts as behavioural constrains.

5 ODP-EL DSL

5.1 Motivations

There are many different type of multi-agent architectures, but common to them
is the collaborative aspects of agents and their interactions. The reference archi-
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tecture based on the ODP community template provides a precise framework for
developing guidelines for enterprise design, operations and computing of com-
plex systems which integrate Agent AI components. This is because the ODP
community provides the expression of many type of organisational collabora-
tions and interactions, including federations, which can be specified through
community contracts. Such contracts also serve as a semantic foundation for a
wide range of constraints associated with policies as described in 3.2.

Further, the expression of roles in community supports the description of
an expected abstract behaviour to be fulfilled by entities with compatible be-
haviour. Initially this can be a human, but at a later stage such a function would
be implemented by a system, modelled as an active enterprise object, such as
an AI agent (not necessarily a LLM agent). A good example of this is a situation
in pathology labs, where the pathology technicians analyse manually the blood
test results, but much of that can be delegated to a clinical decision support
systems (CDS).

This in turn allows for many different multi-agent proposals to be positioned
in relation to the reference architecture. Such a reference architecture, bene-
fits from the semantic precision and pragmatic decisions, developed through
proven international standardisation processes, and can thus bring confidence
to practitioners, system owners, architects and developers .

In our previous work we have proposed a computable policy framework
for supporting privacy consent in healthcare [17], using the concept of con-
sent community. This paper uses that framework as a basis for experimenting
with the DSL to support a range of deontic and accountability concepts related
to consent. The consent use case was chosen as it often includes many com-
plex security level and (cross-)enterprise level rules which are important when
designing and implementing interactions across healthcare providers from dif-
ferent organisational domains, with potential use of third-party services from
AI vendors, while supporting policy preferences of consumers.

We begin with introducing general consent community, with the community
roles of Grantor, the individual whose personal data is being requested, and
Grantee, the individual or organization requesting access to data. The consent
community also includes supporting roles for consent management services,
including IT specific roles with no direct accountability (e.g. monitor) and policy
specific roles which have accountability (e.g. consent policy maker).

The main action by Grantee is to submit data access request to Grantor, clearly
stating the purpose of accessing data. The main actions by Grantor are to review
and understand data access request details, decide whether to grant or deny
access (i.e. authorization through issuing permits) and revoke (withdraw) access
to their data at any time, as needed.

5.2 DSL tooling

In the development of the DSL presented in this paper we are using textX. textX
is a meta-language for building Domain-Specific Languages (DSLs) in Python.
From a single language description (grammar), textX builds a parser and a
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meta-model (a.k.a. abstract syntax) for the language. Building on top of the
Python dynamic nature, textX works as an interpreter. Both the parser and the
meta-model are built on the fly during run-time. This enables a quick round-trip
from the change in the grammar to the working application.

There are two approaches to designing DSLs:

– Meta-model first approach (or Abstract Syntax first). This approach, also
known as top-down, starts with the abstract syntax of the language, and
the concrete syntax (or syntaxes) is defined later. This route is followed by
so-called projectional editing environments where the Abstract Syntax Tree
(AST) is manipulated directly by the user through projections that map ASTs
to concrete syntaxes presented to the user.

– Concrete Syntax first. This approach, also known as bottom-up, starts with
the concrete textual syntax specified by the grammar from which the meta-
model is derived. This approach is popularized by the xText tool and is also
used in the textX tool which we use in our implementation.

Both approaches have their pros and cons. A good overview of these ap-
proaches is given in [25]. We have chosen the second approach as we find it
more suited to our development style and background. Also, this approach is
directly supported by the textX tool.

5.3 Method

Our approach here is to design a generic consent architecture following the
community contract template to specify key roles, such as grantor and grantee,
and use this as a starting point for extending and reifying this generic consent
for clinical care purpose and for clinical research purposes.

The approach is based on expressing the key ODP-EL concepts described
above in terms of language constructs familiar to the domain experts involved
in defining policy rules and constraints, see Listing 1. Ideally, this would involve
subject matter experts from the legislative domain but also security policy ex-
perts, including those defining access control requirements.

In parallel, we developed the language grammar and meta-model using
textX tooling. The grammar and meta-model are based on the semantics of
the ODP-EL concepts as they were used in our consent use case, making sure
that the meta-model is compliant with the ODP-EL while also adopting certain
pragmatic decisions from the language designer perspective.

5.4 Results

This section shows parts of our DSL meta-model and fragments of our consent
model created using our DSL.

Listing 1 shows a community contract implementing a generic consent,
which is required in many different communities. This generic consent contract
defines the roles of the grantee (line 6), representing parties who ask for consent,
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and the grantor (line 11), representing parties who are asked to give consent.
Each role owns a set of actions that can be executed by a role filling object, if
an associated guard expression is satisfied. The guard expression is a logical
expression written inside square brackets.

Listing 1. Generic consent community contract
1 community contract genericConsent {
2 objective "Support consumers privacy consent preferences"
3
4 ... <snip >...
5
6 role grantee {
7 action consent_request(data: ConsentRequestData)
8 emits consent_requested(data: ConsentRequestData)
9 }

10
11 role grantor {
12
13 action review_request(data: ConsentRequestData) [consent_requested(data)]
14 emits consent_reviewed(data: ConsentRequestData)
15
16 authorize give_consent(data: ConsentRequestData)
17 [consent_reviewed(data) && (now - data.subject.birth_date > legal_age)]
18 {
19 permit grant(consent: ConsentRecord) on grantee [this.time + permit_valid]
20
21 burden RespectPrivacy(consent: ConsentRecord) on grantee
22 triggered by grant_trigger
23 discharged by [this.time + privacy_valid]
24
25 burden StoreConsentRecord(consent: ConsentRecord) on consentAuthority
26 discharged by storeConsent(consent: ConsentRecord)
27 }
28
29 declare withdraw_consent (consent: ConsentRecord) {}
30 }
31
32 }

When executed, an action can emit an event. For example, the action
consent_request on line 7 emits an event consent_requested carrying
ConsentRequestData. This event can be used inside a guard condition to al-
low an action call only if a specific event has occurred previously. On line
13, we see that the grantor can call the action review_request only if the
consent_requested event has occurred.

In the body of an authorization action (lines 18-27), three deontic tokens
are created: a permit grant given to the grantee and valid for a duration
permit_valid, defined by the current policy setting; a burden on the grantee
to respect privacy; and a burden on the consent authority to store the consent
record.

Finally, the action of withdrawing consent is modelled as ODP-EL decla-
ration action, through which the grantor notify parties and their agents in its
environment about this decision (line 29).

In order to use this generic consent contract, the DSL has an import facility
whose meta-model is shown in Figure 2. Using the import feature, a community
can import generic consent and connect its roles and tokens with the roles and
tokens from the generic community contract.
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Fig. 2. Language support for community contract imports.

Listing 2. Importing generic consent to a community
1 community HealthCareConsent {
2 # Importing and specializing consent authorization for HC community
3 # Clinician and Consumer instantiate grantee and grantor respectively.
4 # EHR (Electronic Health Record) with patient clinical data is different
5 # from consentRecord
6 import genericConsent as consumerHealthConsent
7 Clinician fulfills grantee # healthcare provider
8 Consumer fulfills grantor # healthcare consumer
9 AccessEHR as grant # alias for grant permit

10 grant_trigger.envelope = {
11 one of [observation_performed , emergency_arrival]
12 }
13
14 ...<snip >...

Listing 2 is an example of an import statement that imports genericConsent
into HealthCareConsent, where the role of Clinician fulfills the generic role of
grantee, while the role of Consumer fulfills the generic role of grantor. Addi-
tionally, AccessEHR is an alias for the generic permit grant. In this community,
we model a scenario under which healthcare clinical research is conducted.

It should be noted that our DSL includes the expression of ODP policy
concept, as also indicated in this import. ODP policy concept supports the
expression of variability of design choices, that can be anticipated at the design
stage and changed at a later epoch. The options available are captured through
policy envelope rules. Further details of policy concept are available in [13,10].
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Fig. 3. Accountability and deontic language concepts.

Listing 3. Passing deontic tokens using delegation

1 delegate permit AccessEHR(consentRecord: consumerHealthConsent.ConsentRecord)
2 to RecommenderService
3 [consentRecord.grantorPreferences.thirdPartySharing]

An example of delegation of permit token in a HealthCareConsent commu-
nity is shown in Listing 3. This delegation is specified as a part of Clinician
role which makes the clinician a Principal in the delegation interaction. At the
same time, the receiver of the token, a Clinical Decision Support (CDS) system
named RecommenderService, becomes the agent of the clinician which acts on
their behalf while the responsibility of the agent’s actions are still on the clinician
which initiated the delegation (Figure 4). The role of the agent is an action-level
role, i.e. the role is valid only during the interaction between the clinician and
the CDS service.

The principal of the delegation has implicit right to withdraw the permit
token at any moment. This principal-agent relation is modelled by the agent
association between Delegation and CommunitRole concepts in the meta-model
in Figure 3. The principal is implicitly the owner and initiator of the delegation
action, in this case the object fulfilling the Clinician community role.

Current version of the grammar/meta-model is available on GitHub under
MIT license (https://github.com/igordejanovic/ODP-EL-textX).

https://github.com/igordejanovic/ODP-EL-textX


14 Z. Milosevic and I. Dejanović

Fig. 4. Token passing and chain of responsibility

6 Supporting Agent AI architectures

The DSL proposed provides a generic approach to expressing deontic and ac-
countability constraints over the actions of humans and AI agents as special type
of active enterprise objects, and supports modelling chains or responsibility.

6.1 Integration architecture

One way of integrating our DSL with AI Agent architecrure is shown in Figure
5. Our DSL tooling includes a compiler which generates Python code from
the DSL specification, which then runs in a Python runtime supporting the
management of deontic tokens. This includes the monitoring of token passing
and state change as a result of speech acts performative actions.

On the other hand, the LLM based agent architectures bring their own con-
straints which determine the best integration approach with our DSL tooling.
For example, crewAI applications are concerned with structuring LLM applica-
tions in terms of AI agents which can collaborate, according to the constraints
stated in their configuration definition.

The crewAI Agents are tightly linked to the crewAI runtime and the Python’s
interpreter, performing their goal-oriented reasoning using LLMs interactions,
and actions using configured tools. Computational agents there are not aware
of deontic tokens and requirements imposed by our DSL and runtime.

This means that the best integration approach with our DSL is through the
use of our runtime created from the DSL to monitor the life-cycle of deon-
tic tokens (Figure 5). This is our generic approach to support deontic token
functionality to other systems, which also requires exposing the deontic tokens
management via an API. This is also an approach we adopted in linking with
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the crewAI system, where our API is accessed by crewAI Agents using a pro-
vided tool. This has required adding the tool functionality to crewAI system, to
support querying and handling of tokens through our token management API.

Fig. 5. DSL integration with Agent AI architecture: example

6.2 Discussions

Applying a generic DSL for ODP-EL to LLM-based agents presents several
challenges. Firstly, their nondeterministic nature (that are dealt by agent archi-
tectures through the mechanism of reflection and continual plan updates) would
suggest initial adoption of pessimistic enforcement strategy for violation of their
accountability actions. It is also possible to support optimistic approaches but
these would require sophisticated monitoring mechanisms, which are particu-
larly difficult when monitoring obligations [13]. These mechanisms may rely on
human oversight, in a similar way when monitoring behaviour associated with
obligations in business contracts [15], or use of AI explainability tools.

The nature of deontic tokens, reflecting their different deontic modalities, re-
quires different mechanisms for their handling in distributed systems. A permit
typically benefits its holder, who needs to keep and present it when accessing
resources that require possession of the permit. For example, a ticket to a football
game is issued to the buyer, who must present the ticket at the stadium entrance.
Thus, permit tokens can be distributed to their owners. It is to be noted that
permits have broader scope than access tokens developed for granting access
to specific resources or APIs in web applications, using OAuth2.0 authorisation
protocol, the specific example of which is JSON Web Token (JWT) [11].

On the other hand, burden and embargo tokens are associated with parties
that have no incentive to keep or present them. In fact, these parties have an
incentive to dispose of these tokens. A good example would be a traffic ticket.
Therefore, these tokens must be stored in a central repository where interested
parties with the appropriate credentials can verify whether the entities they are
interacting with are constrained by any of these tokens.

These general considerations need to be taken into account when integrating
with potential future distributed, agent AI architectures.
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7 Conclusions and Future Work

This paper proposes a new method for formalising and tracking responsibility in
complex enterprise systems involving both humans and AI agents. We achieve
this by creating a domain specific language based on ODP-EL concepts. This
standard-based language aims to support current and future AI architectures.

Our approach leverages the strengths of ODP-EL while utilizing modern
DSL tools for faster development, deployment, and ongoing management of the
system. Our emphasis on the precise expression and implementation support
for accountability constrains over actions of the parties, and the associated chain
of responsibility, is one of the first formal, yet pragmatic frameworks amenable
to the contemporary software engineering practices, including user-oriented
expressions of their requirements. We demonstrate its effectiveness by applying
it to a digital health privacy consent use case.

Our implementation efforts have identified several challenges, arising from
the stochastic properties of LLM systems as well as difficulties with monitoring
obligations in distributed systems. We will monitor future developments in
Agentic systems, and will accordingly update our DSL integration patterns
with such architectures.

Our current language supports a set of key ODP-EL concepts, as driven
by our digital health consent use case. Our plan is to implement several other
concepts such as evaluation and prescription and do a full evaluation with users
through several use cases. For example, we are considering applying our DSL
to specific industrial applications, including digital twins [18], while leveraging
our previous work on the monitoring of obligations in business contracts [15].

We also plan to develop integration of our DSL tooling with specific dis-
tributed architecture in health, such as FHIR [6,7]. This can be supported through
a Mediator component that would encapsulate the logic for interacting with
both the policy engine, which implements our policy language and the FHIR
server, which includes a FHIR Consent Resource, similarly to what we used for
integration with crewAI. We will also be investigating whether the deontic and
accountability concepts can be mapped onto various FHIR Resources and work-
flow patterns, as a way of enhancing business process modelling with policy
constraints, in initiatives such as eRequesting in Australia [1].
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guage for designing experiments in psychology. Applied Sciences 11(17), 27 pages
(2021). https://doi.org/10.3390/app11177823, https://www.mdpi.com/2076-3417/11/
17/7823

4. Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: A survey. IEEE Access 6,
28573–28593 (2018). https://doi.org/10.1109/ACCESS.2018.2831228

5. European Parliament, Council of the European Union: General Data Protection Reg-
ulation (GDPR) – Legal Text, https://gdpr-info.eu/

6. Fast Healthcare Interoperability Resources V5.0.0 (2023), http://hl7.org/fhir/R5/
7. Fast Healthcare Interoperability Resources: Consent (2023), https://build.fhir.org/

consent.html
8. Griffo, C., Almeida, J.P.A., Guizzardi, G., Nardi, J.C.: From an ontology of service

contracts to contract modeling in enterprise architecture. In: 2017 IEEE 21st interna-
tional Enterprise distributed object computing conference (EDOC). pp. 40–49. IEEE
(2017)

9. Hanson, J., Milosevic, Z.: Conversation-oriented protocols for contract negotiations.
In: Seventh IEEE International Enterprise Distributed Object Computing Conference,
2003. Proceedings. pp. 40–49 (2003). https://doi.org/10.1109/EDOC.2003.1233836

10. ISO/IEC IS 15414, Information Technology - Open Distributed Processing - Enterprise
Language 3rd edn (2015)

11. Jones, M., Bradley, J., Sakimura, N.: Json web token (jwt). Tech. rep., Internet Engi-
neering Task Force (IETF) (2015), https://datatracker.ietf.org/doc/html/rfc7519

12. Jones, M.B., Nadalin, A., Campbell, B., Bradley, J., Mortimore, C.: OAuth 2.0 To-
ken Exchange. Request for Comments RFC 8693, Internet Engineering Task Force
(Jan 2020). https://doi.org/10.17487/RFC8693, https://datatracker.ietf.org/doc/rfc8693,
num Pages: 27

13. Linington, P.F., Milosevic, Z., Tanaka, A., Vallecillo, A.: Building Enterprise Sys-
tems with ODP: An Introduction to Open Distributed Processing, 1st Edition. Chap-
man&Hall/CRC Innovations in Software Engineering and Software Development
(2011)

14. Linington, P.F., Miyazaki, H., Vallecillo, A.: Obligations and Delegation in the ODP
Enterprise Language. In: IEEE 16th International Enterprise Distributed Computing
conference (2012)

15. Linington, P., Milosevic, Z., Cole, J., Gibson, S., Kulkarni, S., Neal, S.: A unified be-
havioural model and a contract language for extended enterprise. Data and Knowl-
edge Engineering 51(1), 5–29 (2004). https://doi.org/https://doi.org/10.1016/j.datak.
2004.03.005, https://www.sciencedirect.com/science/article/pii/S0169023X0400031X,
contact-driven coordination and collaboration in the Internet context

16. Milosevic, Z.: Ethics in digital health: A deontic accountability framework. In:
2019 IEEE 23rd International Enterprise Distributed Object Computing Conference
(EDOC). pp. 105–111 (2019). https://doi.org/10.1109/EDOC.2019.00022

17. Milosevic, Z.: Enacting policies in digital health: a case for smart legal contracts
and distributed ledgers? The Knowledge Engineering Review 35, e6 (2020). https:
//doi.org/10.1017/S0269888920000089

18. Milosevic, Z., van Schalkwyk, P.: Towards responsible digital twins. In: Sales, T.P.,
de Kinderen, S., Proper, H.A., Pufahl, L., Karastoyanova, D., van Sinderen, M. (eds.)
Enterprise Design, Operations, and Computing. EDOC 2023 Workshops. pp. 123–
138. Springer Nature Switzerland, Cham (2024)

https://doi.org/10.3390/app11177823
https://doi.org/10.3390/app11177823
https://www.mdpi.com/2076-3417/11/17/7823
https://www.mdpi.com/2076-3417/11/17/7823
https://doi.org/10.1109/ACCESS.2018.2831228
https://doi.org/10.1109/ACCESS.2018.2831228
https://gdpr-info.eu/
http://hl7.org/fhir/R5/
https://build.fhir.org/consent.html
https://build.fhir.org/consent.html
https://doi.org/10.1109/EDOC.2003.1233836
https://doi.org/10.1109/EDOC.2003.1233836
https://datatracker.ietf.org/doc/html/rfc7519
https://doi.org/10.17487/RFC8693
https://doi.org/10.17487/RFC8693
https://datatracker.ietf.org/doc/rfc8693
https://doi.org/https://doi.org/10.1016/j.datak.2004.03.005
https://doi.org/https://doi.org/10.1016/j.datak.2004.03.005
https://doi.org/https://doi.org/10.1016/j.datak.2004.03.005
https://doi.org/https://doi.org/10.1016/j.datak.2004.03.005
https://www.sciencedirect.com/science/article/pii/S0169023X0400031X
https://doi.org/10.1109/EDOC.2019.00022
https://doi.org/10.1109/EDOC.2019.00022
https://doi.org/10.1017/S0269888920000089
https://doi.org/10.1017/S0269888920000089
https://doi.org/10.1017/S0269888920000089
https://doi.org/10.1017/S0269888920000089


18 Z. Milosevic and I. Dejanović
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