Software and Systems Modeling (2025) 24:741-754
https://doi.org/10.1007/s10270-024-01243-4

SPECIAL SECTION PAPER l‘)

Check for
updates

Using DSLs to manage consistency in long-lived enterprise language
specifications

2

Peter Linington' . Zoran Milosevic2(® - Akira Tanaka3 - Igor Dejanovi¢*

Received: 11 March 2024 / Revised: 30 October 2024 / Accepted: 9 November 2024 / Published online: 29 November 2024
© The Author(s) 2024

Abstract

Modern enterprise systems are likely to have a very long life. Their specifications therefore need to employ mechanisms that
allow them to evolve during their lifetime; where they exploit generic components, these must be adaptable for use in novel
situations. The paper looks at some of the issues that arise from this requirement, and how the exploitation of domain-specific
language technologies in the tool-chain can assist in maintaining consistency of the specification as a whole. First, it reviews
the final state of the family of standards supporting the ODP Enterprise Language, which is intended to handle this kind
of application. In particular, it looks at the way the framework for defining policies can be used to accommodate changing
requirements during the lifetime of an evolving system. It also looks at the way the idea of deontic tokens enables factoring
out of the management of obligations from the basic behaviour of interacting system components. It then proposes a roadmap
for building tools that can be used to unify the constraints from different areas of concern into a single specification. The
approach taken is to exploit the power of domain-specific languages (DSLs) to allow designers in the various areas of concern
to provide their input in terms natural to them. Finally, it looks at the way this approach promotes the establishment of a
robust tool-chain capable of handling the evolution and scalability of enterprise systems. The paper uses a running example
from the e-health domain to show how specific areas identified in the e-health standards can lead to language definitions, and
so to tooling, that can be used to manage unified, system-wide specifications.

Keywords Open Distributed Processing - Domain Specific Languages - Policies - Deontic Tokens

1 Introduction

Many recent cyber-security and system engineering devel-
opments, including real-time analytics and Al system inte-
gration efforts, require the precise expression of enterprise
structure to ensure the development of reliable, safe and

Communicated by Javier Troya and Alfonso Pierantonio.

B Peter Linington evolvable systems. A robust structure can form the basis for
P.F Linington @kent.ac.uk managing consistency, such as in controlling system evo-
Zoran Milosevic lution and for analysis of obligations to help enforce the
zoran@deontik.com necessary responsibility and trustworthiness principles.
Akira Tanaka In general, we consider consistency of a specification to
a.tanaka@view5.co.jp be the absence of logical contradictions deducible from it,
Igor Dejanovié or of any behavioural deadlocks or livelocks within it. It is

igord@uns.ac.rs important that the supporting tool-chain should alert users to

School of Computing, University of Kent, Canterbury CT2 such inconsistencies as the specification evolves.

7NF, Kent, UK This paper builds on the established international stan-
dard for Open Distributed Processing [1-3], using it as a
framework for specifying our target distributed enterprise. It
revisits some of the key features of the ISO ODP enterprise
language standard [4, 5, 23, 24], in the light of recent devel-

Deontik, Brisbane, Australia
3 view5 LLC, Yokohama 220-0004, Kanagawa, Japan

Faculty of Technical Sciences, University of Novi Sad, Novi
Sad 21000, Vojvodina, Serbia

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-024-01243-4&domain=pdf
http://orcid.org/0000-0002-1364-7423

742

P.Linington et al.

opments in data modelling and science, including machine
learning, behaviour-centric modelling, and real-time analyt-
ics, while considering the latest in contemporary software
engineering and tooling. This includes recent conceptual
modelling approaches and established software engineering
techniques, such as model-driven development and domain-
specific languages (DSLs).

We look, in particular, at two areas within the enter-
prise language: the use of deontic tokens' to separate basic
behaviour from the obligations that guide it, and the provi-
sion of a clear policy framework to support system evolution,
thereby allowing reconfiguration during the system’s life-
time; dynamic changes in policy provide explicit support for
change to deal with new system requirements.

The ODP Enterprise Language factors out particular non-
functional requirements, such as deontic concerns and policy
structures; this refactoring can lead to situations in which
interpreting the specification involves merging several spec-
ification fragments, often each using representations tailored
to the various areas of concern.

The paper is motivated by the need to provide a solid,
standards-based, framework for the expression of account-
ability requirements, reinforcing the broader system engi-
neering concerns. This requires, for example, more explicit
support for consumer interactions when addressing their per-
sonal privacy preferences, such as in terms of informed
consent [29], while still relying on the established security
standards and practices.

Adopting this new style of working may need an increas-
ing level of automation, enabled by new technologies, such
as Al. At the same time, regulatory and legislative changes
will need to be accommodated to deliver safe, reliable and
trustworthy systems.

The contributions in this paper are organized as follows.
Sections 2 and 3 review the ODP concepts of policy and deon-
tic token, and Sect.4 outlines a roadmap for managing the
dependencies between tool specification elements. Section 5
introduces a working example from the healthcare sector.
Section 6 then relates the example to the two concepts intro-
duced in Sects.2 and 3, and Sect.7 shows how they can be
used to organize specifications in a large system. Section 8
introduces the approach taken to provision of a tool-chain,
Sect.9 gives an introduction to domain specific languages,
and Sect. 10 gives specifics of the tool-chain and examples
of its use. Section 11 introduces some related work. Finally,
Sect. 12 gives conclusions and suggests future directions.

1" deontic: pertaining to duties or obligations; deontic token: a package
of information communicated when updating the deontic state of an
object.

@ Springer

2 Whatis a policy?

Fundamental to the concept of a policy is the recognition,
when a system is being designed, that the requirements
placed on it will change during its lifetime. Changes may be
because of natural evolution of a particular system instance,
or because of different instances being part of a general prod-
uct line. In either case we can distinguish between separate
epochs? concerned with design, implementation, configura-
tion or adaptation during ongoing use.

In preparation for expected change, the original designer
can declare those parts of the specification that are likely to be
affected by the change as being policies. A policy will have
an initial, or default value, but this can be changed as circum-
stances dictate. It is not, however, reasonable for the policy
to be changed in a completely arbitrary way. In a financial
application, for example, we may want to establish a pol-
icy which governs how interest is calculated, and be able to
use this to take account of changes in tax regulations, but it
would not be reasonable to use this flexibility to install code
that transfers a part of the holding to the administrator’s pen-
sion fund. There needs to be some control over what a policy
can be set to do.

To deal with these considerations, the ODP concept of
policy represents a named point of variation, where required
behaviour can be changed. However, the point of variation
also has associated with it what is known as a policy enve-
lope that sets bounds on what range of behaviour is actually
allowed. Often this will be done by restricting values to be
within an enumerated set, but values may be constrained to
any behaviours subject to given constraints. These different
styles of constraint are both ways of defining the policy enve-
lope.

Other information associated with a policy is its point
of application, limiting when and where it can be invoked,
and the policy setting behaviour, which controls the circum-
stances when the policy value can be changed, and by whom.
The definitions of the architectural elements involved are
in [2—4]. Further discussion of the issues involved here can
be found in [25].

In all cases, however, declaring a policy involves the sepa-
ration of a core design from some specializations of it. These
are likely to cover various possible use cases, appropriate in
different epochs.

2 In RM-ODP, an epoch is defined to be a phase or period of time during
which some set of rules applies; it can be thought of as a generalization
of, for example, a design or implementation phase.

Using DSLs to manage...

743

3 Deontic Tokens

Another structuring tool provided in the enterprise language
is the ability to associate deontic tokens with actions per-
formed. In ODP we identify the set of objects involved in
related interactions as forming a community, and these com-
munities provide an organizational context in which such
tokens are defined.

The focus here is on actions which have some profound
effect on the obligations or permissions associated with par-
ties within the system. Following the usage in linguistics,
these actions are called speech acts. This is because initi-
ating one has potentially far-reaching consequences for the
state of the system that result directly from the fact that the
interaction has happened; they do more than just progress a
chain of sequential dialogue steps. A simple example of this
would be a purchase action which not only places the respon-
der under an obligation to supply goods, but also leaves the
purchaser with an obligation to pay for them (perhaps within
30 days).

We separate the basic behaviour that covers all the things
that might possibly happen from the behaviour aimed at
achieving specific goals, which are made explicit by adding
permissions and obligations. This is modelled by wrapping
such obligations or permissions into tokens which are com-
municated as part of the speech act and thereby change the
obligations or capabilities of the participants. Fig. 1 outlines
the typical steps in the lifecycle of a deontic token. This exam-
ple shows the transfer of an access permission, tracking the
process through the following stages:

1. at some point the business process specifies that a permis-
sion is to be transferred, and an empty token is created.

2. this token is populated by information from the local
access manager.

3. the token is made available to the invocation process,
which initiates the required speech act.

4. the token becomes part of the speech act payload.

5. the recipient of the speech act schedules local actions to
process the token in its local context.

6. this may involve adding the permission to its access man-
agement state.

7. in other circumstances, the recipient may simply act as an
intermediary, passing on the token without interpreting it.

The advantage of making this division is that it simplifies
the business process without needing to be explicit at that
point on how a permission was obtained or an obligation
is to be discharged. On the other hand, generic obligation
handling templates can be set up that can then be applied to
a number of pieces of basic dialogue.

Basic behaviour can be considered as expressing all the
valid sequences of actions that can happen, and is similar to

grantor grantee

@ @

I

>®”7 speech ”7’@
v @act Yy
@ access access @
manager manager

Fig.1 Stages in the lifecycle of a deontic token

the definition of a protocol or process state machine. Actions
outside the basic behaviour are violations, but not all actions
within it are equally desirable. Decoration of the behaviour
with deontic tokens allows the expression of preferences and
goals.

Any of the active objects in a design may hold tokens
representing deontic information. Active objects in any role
can create tokens called permits, burdens or embargos, and
these may be subject to constraints or guards. They repre-
sent permissions, obligations and prohibitions, respectively.
These tokens can then be passed to other objects as a result
of performing speech acts with them.

An active object may also pass on a token it has received, if
this better expresses the designer’s intent than creating a fresh
one, enabling, for example, a delegation pattern. One object
holding an obligation to see that some action is performed
in the future might arrange that this happens by passing the
token expressing its burden on to an agent object. On receiv-
ing the token, the agent, by holding it, becomes obliged to
see to it that the action is carried out. Thus, holding a deontic
token constrains its holder to perform some behaviour that
discharges an obligation or exploits a permit. However, there
may be many possible behaviours that could do this, and the
obligation does not determine exactly which option should
be taken (or indeed guarantee that it can ever be discharged
satisfactorily).

A token may require more than just that an action be per-
formed eventually. It might, for example, state a time limit
before which the action is required. In such cases, the pas-
sage of time may cause the violation of this guard expression
(as may the results of other behaviours). The definitions of
the architectural elements involved are in [2—4].

4 A tool-building roadmap

A system specification draws on many sources, and one of
the requirements of the tool-chain is that these sources are
merged in a consistent way. By consistency here, we mean
logical consistency, so that the resultant merged specification

@ Springer

P.Linington et al.

744
language resource
grammar model

AN
parser
generator
design generates
execution
input parser
runtime
. support
recognition
action

Fig. 2 The role of a language parser. Items above the green horizon-
tal dotted line are involved in the design phase, and those below it are
involved in runtime use. The magenta generalization relationship indi-
cates that the runtime support refines the resource model, and the red
double arrow indicates that the parser generator creates a parser for run-
time use. The blue interactions show how the information needed by
the various components is provided

can be subjected to model checking and any contradictions,
or behaviour livelocks or deadlocks found. It is then up to
the designer to resolve any problems found, since doing so
requires knowledge of the design intent. The sources include,
for example, broadly accepted standardized frameworks,
enterprise structures and session types, policy specifications
and control of non-functional aspects of management, such
as those concerned with responsibility or trustworthiness.
Over a period, any of these may evolve, and the tool support
used needs to be structured so as to facilitate this evolution.
The introduction of a DSL provides a pattern to manage this
structuring.

Any language can be seen as a set of rules for recognizing
and interpreting a sequence of tokens (see Fig.2) and then
updating the receiver’s state in consequence. Recognition is
based on matching the input to the possibilities allowed by
the language grammar, but interpreting the utterance matched
depends on knowledge of the state of the world. Implement-
ing an interpreter therefore requires knowledge of a model
of the resource being manipulated, which is to be updated
as a consequence of matching the language elements. When

@ Springer

a match is detected, an action must be performed to satisfy
the language semantics, and the nature of this action is deter-
mined by the association defined in the language specification
between language elements and local resources.

These resources can take many forms, but in the context
of this paper might, for example, involve a model for a repos-
itory of deontic constraints, such as available permissions.

Linkage to this model can take many forms. The simplest
is by sharing of a namespace, so that names in the utterance
match those in the model, and appropriate actions, such as
reporting or changing the state of the resource, are selected
based on the type of the language element matched. In an
object-oriented model, for example, object accessor or muta-
tor actions might be tied to the position within the utterances,
maybe by treating input parameters as object mutators and
responses as object accessors. In more complex cases, the
grammar can be decorated with instructions for manipulat-
ing the resource model in an application specific way.

However, this is not necessarily a one step process. Con-
sider the transfer of deontic tokens introduced above. There
are some basic pieces of behaviour making up the business
process, themselves defined by a language, in which the
tokens are seen as atomic objects. The semantic action on
receiving a token is to recognize it as needing storage and
eventual further processing of its content. However, this pro-
cessing can treat the token transparently, without interpreting
it.

When the time comes, a further instance of the language
pattern is invoked, the nature of which is determined by
the token type. This parses the stored token, which involves
recognition of the deontic elements and invocation of meth-
odsidentified in the deontic DSL and defined in the associated
deontic runtime support.

This repeated series of evaluations of language elements
to unwrap successive semantic facets forms the basis of a
roadmap for tool construction proposed here. The separation
of different areas of concern is realized by the introduction of
fragments drawn from different domain-specific languages.
The main steps in the roadmap are then as follows.

1. High-level architectural analysis to identify areas of con-
cern which are largely independent.

2. Creation of corresponding resource models. Where pos-
sible these can be existing reusable standard models.

3. Definition of domain-specific languages for the manage-
ment of each resource model type.

4. Generation of the DSL fragments needed for each aspect
of the design (including the necessary semantic rules).
These will have as terminal actions invocations of the
parts of the runtime system created by refinement of the
resource models.

5. Integration with a suitable test harness for model checking
and validation.

Using DSLs to manage...

745

This paper has first identified two distinct areas of concern
related to the evolution of enterprise, namely policy (Sect.2)
and deontic tokens (Sect.3), which are then used as a basis
for the corresponding resource models and related DSLs, the
concepts for which are introduced and then elaborated in the
following sections.

5 An example of system evolution

As explained above, the flexible design of a complex sys-
tem requires support for handling changes, both in terms of
the variability of design choices supporting the selection of
specific design parameters during the system life cycle and
in terms of the re-assignment of responsibilities of parties
involved, such as during delegation.

In terms of supporting variability of design choices, for
example, one of the latest digital health standards, HL7 Fast
Health Interoperability Resources (FHIR) [12], provides a
good example of a specification that takes account of the
need for future tailoring. This standard is part of a family
supporting interoperability between loosely federated health
support systems. The standard defines common information
components (“FHIR Resources”) across many different juris-
dictions and clinical domains, such as patient, observation,
medication and consent, for example, while allowing their
tailoring (by constraints or extensions). Tailoring is often
needed to reflect the requirements of specific jurisdictions,
such as Australia, UK or Japan or any other domains of use,
such as supporting the International Patient Summary [13].

How this tailoring is done is set out in an implementa-
tion guide (IG), which provides a set of rules about how
FHIR Resources should be used to solve a particular prob-
lem, with associated documentation to support and clarify the
usage. Another example is where FHIR provides an enumer-
ation type with values that can be used in various common
circumstances. These are referred to as value sets. For exam-
ple, the current FHIR Consent Resource [14] includes a set
of Regulatory consent policy types from the US and other
regions, captured in the Consent.regulatoryBasis attribute of
the Consent Resource.

The approach taken by FHIR is an instance of the more
generic policy structure described above for supporting vari-
ability of design after the specification epoch.

We use the FHIR Consent Resource Framework to provide
a working example, adopting the roles of grantor, grantee,
consent enforcer and consent manager in defining a com-
munity and the supporting idea of subject to specify who
the consent applies to (in ODP, a community defines how a
group of participants should behave in order to achieve their
objective). We can then go on to position our deontic lan-
guage (see below) in relation to it, providing the content to
be referenced by the Consent.policyBasis attribute.

There are, of course, many kinds of consent, but, for
simplicity, we will concentrate on consent in the service of
privacy management.

6 Factoring out obligations

The FHIR consent support also illustrates how obligations
can be introduced in a controlled way, as explained in [29].
Consent occurs when one person (the grantee, who receives
the consent statement) accepts and voluntarily agrees to the
proposal or desires of another (the grantor, who has issued
the consent statement). This is the same usage as we find in
common speech, and also, in a more restrictive way, in fields
such as the law, medicine and research.

In digital health, consent is a record of a healthcare con-
sumer’s choices (or choices made on their behalf by a third
party); it permits or denies recipients individually, or by
virtue of the roles they might take within a given policy con-
text, to perform one or more actions, for specific purposes
and periods of time; see [14].

The key deontic concepts here are permissions or prohibi-
tions, which are given by the consumers (acting as grantors)
to the recipients (who might be clinicians or researchers).
These control their actions directly, while the policy context
implies a set of background rules to apply to the recipients,
such as medico-legal rules or perhaps business rules, all of
which are defined as part of a broader consent community.
These can not only take the form of obligations or authoriza-
tions, but can also involve broader accountability rules such
as delegation of obligations or permissions, as can be found,
for example, in a principal-agent relationship.

When a patient gives a consent to a clinician to access, for
example, the health information data stored in the patient’s
electronic health repository, this action changes the deontic
states of both parties and is thus regarded as a speech act. So,
the patient can provide access to all their healthcare data, but
restrict access to their mental health data, and this decision
must be respected by the clinicians. This can be modelled as
a permit to access all their health data, while the prohibitions
over access to their mental health data can be modelled as a
separate overriding embargo for the mental health data. This
is a modelling style which can also be reflected in the policy
language syntax adopted. Figure 3 illustrates the transfer of
an explicit permission object. These deontic expressions can
form the elements of the external policy language (as in the
HL7 Consent Resource policyBasis attribute) and would be
used to provide the added semantics for this FHIR Resource.

@ Springer

746

P.Linington et al.

Q

Access
EHR

B
Respect
Privacy

T &

Grantee

Q

Access consent() Access

T &

Grantee

Grantor Grantor

Fig.3 How deontic elements are modified by performance of a consent
speech act

7 Software engineering problems

The two specification features addressed in this paper raise
different issues from a software engineering perspective.
Handling a specification using policies is largely an exercise
in unification, while adding deontic constraints is a matter of
coverage and completeness, typically reducing the level of
non-determination in the specification.

At any particular point in time, the specification elements
can, in principle, be parsed and interpreted to build an overall
system model, processing each element in a way consistent
with the language in which it is expressed. Thus, information
may be drawn from integrated specification tools, or from
domain-specific languages matched to different parts of the
problem domain. There is a need to map between the names-
paces of different elements, taking account of variations in
their levels of abstraction, but still producing a unified view.

A major problem arises, however, when policies change,
since inconsistencies arise when there are interactions between
different communities following diverging policies. [t may be
possible to control the propagation of new policies so as to
avoid short-term inconsistencies, but some form of escala-
tion will be needed when irreconcilable differences come to
light.

Indeed, the potential for inconsistencies is one of the
motivations for the introduction of the concept of a policy
envelope. Knowledge of this envelope can be used to guide
the implementation of dynamic checking and reconciliation
when policies change. Attempting to change a policy to one
which violates the envelope should result in a runtime error.
Some gross errors, such as policy name clashes between
different source components, should be flagged during inte-
gration.

The introduction of deontic tokens, on the other hand, was
motivated by a desire to trade the extent of the system model
against the level of non-determinism in it. Here the impact of

@ Springer

adding more pieces of behaviour without further qualification
is much more significant. Consider a system in which there
are a number of different pieces of behaviour, perhaps order-
ing goods, making deliveries or making payments. These can
all be described in detail, but each is seen as initiated by some
unspecified internal action of one or other of the parties.

Adding deontic constraints implies modelling some sort of
preference or goal-seeking behaviour. Thus, making a deliv-
ery places an obligation on the purchaser to make payment.
The implication of this is that we need to introduce state
and behaviour into the system model corresponding to to-
do lists and scheduling functions. The behaviour is extended
not by rigid succession, but by requirements that actions be
performed eventually, although not necessarily immediately.
The amount of detail to be modelled has grown significantly.

It is worth noting that considerable care is needed in val-
idating the design process when obligations are involved.
The transition from an abstract system specification to an
implementation is often described as being represented by a
refinement relationship, so that any solution in which the sys-
tem specification is a valid abstraction of the implementation
would be accepted. However, when we consider security, or,
more particularly, privacy, this is not enough.

If we consider a design in which privacy is maintained
by establishing the encapsulation of the information con-
cerned within an object, accessed only by policed interactions
with that object, there is a problem. It should be clear that
a refinement which reveals an additional interface to the
object, but without the necessary policing, will be valid
from a behavioural point of view, but will destroy the pri-
vacy guarantees. This is because hiding the backdoor is a
valid behavioural abstraction. It is therefore necessary to add
constraints that preserve the encapsulation property, going
beyond the requirements for behavioural refinement.

8 Language support

Having identified a number of distinct pieces of specification,
we need to examine how to structure a tool-chain that is able
to relate and unify them. This is already familiar territory,
because the ODP framework is inherently viewpoint based,
and so a specification using it is normally manifest as a set of
viewpoint models linked by a set of pairwise correspondence
models.

Tactically, we can approach the relation of these parts in
two ways. One option is for the unification to be performed at
alanguage level, deriving a composite grammar and process-
ing all the elements of the specification using it. Alternatively,
each element can be processed independently according to
its own domain-specific language grammar to construct a set
of related metamodels and a set of mapping rules between

Using DSLs to manage...

747

them. In either case we must consider the handling of both
syntax and semantics.

The choice we have taken here is to work with a set of
domain specific languages, yielding a set of metamodels.
This is motivated, in part, by the wish to simplify the orga-
nization of semantic rules and increase modularity. Having
each language associated with a minimum set of resource
models reduces interdependencies. A number of effective
solutions now exist for the support of DSL parsing, but the
metamodels these produce have to be linked with rules for
semantic interpretation. If we can factor semantic aspects
in some way, we can make the additional rules for related
behaviour more modular.

Indeed, this is why we introduce the management of deon-
tic aspects in terms of token passing. Making the tokens
strongly encapsulated allows their interpretation to be local-
ized with the deontic structures and rules, largely decoupled
from the basic behaviour. The fulfilment of obligations is at
a different level of detail behaviourally from the policing of
interaction protocols.

9 Domain Specific Languages

Domain-specific languages (DSLs), in contrast to general-
purpose languages (GPLs), are languages specifically tai-
lored to the particular domain of usage. They incorporate
concepts from the domain at hand, providing better expres-
siveness and the possibility of direct involvement of subject-
matter experts in the specification of the solution. Note that,
in general, such DSLs can be either textual or graphical based
languages, but, for simplicity, we restrict discussion in this
paper to textual languages.

Domain-specific languages (DSLs) have been success-
fully applied over many years [7] to various domains such
as rehabilitation [21], cognitive sciences [10], ecology [20],
and business contract specification [26].

Domain-specific analysis, verification, optimization, par-
allelization, and transformation (AVOPT) are challenging, if
not impossible, when using general-purpose languages [28].
On the other hand, AVOPT with DSLs is not only possi-
ble but also relatively straightforward to implement. This
brings about a better user experience and consistency in the
specification, which is an important feature for long-term
developments.

Compilers and interpreters utilize concepts from the meta-
model produced to execute system specifications. In the case
of our language, this involves the execution of workflows
to ensure that all actions are executed, deontic tokens and
policies are handled, and condition and guard constraints
are checked and resolved according to the system specifi-
cation and language semantics, for example by updating of
the health record. The workflow is executed by the ODP-EL

interpreter which is configured by the system specification
written in an ODP-EL DSL and is a part of the broader appli-
cation implementation.

Subject-matter experts, in collaboration with system
developers, use the DSL to generate the system specifica-
tion. System developers are also responsible for developing
parts of the system not covered by the DSL, such as updates
of the electronic health record. Such actions are bound via
references to the resource models declared in the DSL, as
discussed in Sect.4.

10 From specification to implementation

Section 9 highlighted the benefits of using several DSLs to
express different aspects of an enterprise specification and
thus support consistency, particularly when controlling sys-
tem evolution and expressing the dynamics of obligations
among active enterprise objects, such as parties to a contract.

10.1 Available tools

We believe the grammar-based tools, built with model-driven
support, such as Xtext [35] and textX [11] provide a good
foundation for implementing ODP-EL concepts.

Both of these tools include support for expressing DSL
grammars in terms of a set of syntax rules which describe
valid relationships between the constituent symbols of the
language. These can be applied in a way that can be used by
a parser to analyse the expressions and ensures their validity.
They can also produce metamodels which represent the key
concepts and relationships of the grammar.

Xtext is a language workbench component of the Eclipse-
based EMF/Ecore tooling family and it integrates tightly
with the Java and Ecore typing system. Xtext supports vari-
ous aspects of language development, including defining the
syntax ensuring well-defined structure and enabling efficient
parsing, creation of the metamodel from the grammar and
integration with the existing Eclipse environment. Consider-
ing its grounding as part of Eclipse tooling, Xtext is primarily
aimed at a Java environment.

The textX tool started as an Xtext metalanguage imple-
mentation in Python, but has evolved further (see [34]). textX
is simpler and more lightweight than Xtext, enabling fast
DSLs development in Python that is IDE agnostic, provides
a fast round-trip from grammar modification to testing and,
although made with DSL development in mind, can also
be used in different contexts [11]. This includes language
support inside IDEs, support for human readable configu-
ration languages, support for a Model-Driven Engineering
tool-chain, analysis of legacy source code, and so on.

textX uses a single grammar to construct a parser and
a metamodel at runtime—see Sect.4. The metamodel con-

@ Springer

748

P.Linington et al.

tains all the information about the target language and a set
of supporting Python classes inferred from grammar rules.
The parser will parse programs or models written in the new
language and will construct a Python object graph; that is, the
model conforming to the metamodel. The model can subse-
quently be used for interpretation or source code generation.
The textX tool has support for error reporting, debugging,
and metamodel and model visualization. The current version
of the metalanguage, although similar to Xtext’s, differs in
various places providing some distinctive features [33].

10.2 Development of a DSL

We have been using these tools to check our intuition about
the tool-chain requirements when supporting applications
with the ODP framework. We began our experiments with
textX, attracted by its lightweight approach to DSL develop-
ment but have later transported the textX created grammar
into the Xtext environment, with added benefits of interop-
erability with the DSL tooling.

We started with the development of deontic concepts,
because of the need to implement several cross-organizational
use cases, such as those presented in [24] and [29]. Our
aim was to develop user-driven syntax to reflect the dynam-
ics of the obligations, permissions and delegations, while
maintaining clarity, simplicity and consistency of the expres-
sions. This is particularly important for domain experts
concerned with the expression of responsibility and account-
ability concepts, which are key for both organizational and
inter-organizational processes. We then went on to incorpo-
rate concepts to support a set of policies.

The textX tooling allowed us rapid prototyping of the DSL
in an iterative and incremental manner, focusing only on the
concepts required by the use cases in question. This included
quick changes in the grammar and syntax as new concepts
were required to express more complex rules, entities or pat-
terns.

For example, the use of the concept of event was initially
introduced to signify occurrences such as activation of some
permits (which were created during instantiation of commu-
nity roles). In the example below, access_trigger (Fig. 4, line
19), which was originally a simple item, was subsequently
replaced with a policy (see Fig. 4, line 49), to support expres-
sion of various event types modelled as policy values for
such access_trigger events, namely observation_performed
and emergency_situation event types. Another example was
the need to express more complex rules associated with the
permit_valid duration parameter, so that it can be changed
from an initial value of 30 days to any value from 1 to 6
months, as stated in its envelope (see Fig.4, line 56). There
are many such examples where simpler rules are changes
to more complex rules as a result of ongoing requirements
analysis.

@ Springer

1 community consent {

2 # includes concepts to support (part of) HL7 FHIR privacy consent
3 objective "Support_patient_privacy_consent_preferences”

4 events {

5 observation_performed, emergency_situation

6 }

7 # artifacts — objects referenced by actions

8 artifact subject {

9 id ID

10 name string

11 birth_date string

12 }

13 role grantor {

14 speech act give_consent (subject)

15 [now — subject.birth_date > legal_age] {

16 # permission for grantee to read subject’s data; triggering
17 # event can exploit permission until permit_valid time
18 AccessEHR: permit on grantee (subject)

19 triggered by access_trigger [this.time 4+ permit_valid]
20 # obligation for respecting privacy compliance

21 RespectPrivacy: burden on grantee (subject)

22 discharged by

23 # This burden is discharged by the timeout only.
24 # Le. it doesn’t observe any event

25 [this.time + privacy_valid]

26 }

27

28 role grantee {

29 # access.EHR action allowed if a grantee holds AccessEHR permit.
30 action access_ EHR (subject) [AccessEHR]

31 action perform_observation (subject)

32 emits observation_performed

33 }

34 role consent_enforcer {

35 monitorRespectPrivacy: burden

36 handleError: burden

37 }

38 role consent_manager {

39 # The actor that manages the consent lifecycle (see FHIR)
40 manageConsent Workflow: burden
41
42 policy legal_age: duration {
43 policy setting by consent_manager
44 initial value 18 years
45 envelope {
46 this >= 16 years
47 }
48 }
49 policy access_trigger: event {

50 policy setting by consent_manager

51 initial value observation_performed

52 envelope {

53 one of (observation_performed, emergency situation)
54 }

55 }

56 policy permit_valid: duration {

57 policy setting by consent_manager

58 initial value 30 days

59 envelope {

60 from 1 to 6 months

61 }

62 }

63 policy privacy_valid: duration {

64 policy setting by consent_manager

65 initial value 2 years

66 # Envelope references permit_valid policy; it is evaluated
67 # even when the permit_valid is about to be changed.

68 envelope {

69 from 1 to 10 years

70 this >= permit_valid

71 }

72 }

73}

74

75 party doctor as consent.grantee
76 party patient as consent.grantor

Fig.4 Example of the DSL specification for the consent community

Using DSLs to manage...

749

1 Model:

2 communities*=Community

3 objects*=EnterpriseObject

4

5 EnterpriseObject:

6 ActiveEO | DeonticToken

7T

8 ActiveEO:

9 Party | Agent

10

11 Community :

12 ’community = name=ID {’

13 ’objective 7 objective=STRING

14 events=Events?

15 artifactsx=Artifact

16 roles*=CommunityRole

17 policies*=Policy

18 '}

19

20 Artifact:

21 >artifact * name=ID '{’

22 (" parties’ parties+=[CommunityRole][",’])?
23 propertiesx=Property

24 o

25 3

26 Action:

27 SpeechAct | BasicAction

28

29 BasicAction:

30 Jaction’ name=ID (’(’ parametersx=[Artifact]|[’,’] 7)")?
31 guard=Guard?

32 (7emits’ triggers_event=Event)?

33 3

34 SpeechAct:

35 ‘speech’ Tact’ name=ID (’(’ parametersx=[Artifact][’,’] 7)")?
36 guard=Guard?

37 o

38 tokens*=DeonticToken

39 '} (Temits’ triggers_event=Event)?
40

41 Events:

42 ‘events ' {’

43 eventsx=Event [,]

44 '}

45

46 Event: name=ID (’(’ artifacts+=[Artifact]|[’,’] 7)7)7:

48 DeonticToken:

49 Burden | Embargo | Permit

50

51 Embargo:

52 name=ID ’:’

53 ’embargo’ ’‘on’ action=ID guard=Guard

54

55 Burden:

56 name=ID ’:’ ’burden’ violation?="violation’

57 (7on’ role=[CommunityRole])?

58 (7(7 parametersx=[Artifact|[","] 7)7)?

59 (guard=Guard)?

60 ("triggered’ 'by’ trigger=Event)?

61 (’discharged ” by’ (finish _event=EventExpression)?)?
62 (event _guard=Guard)?

63

64 Permit:

65 name=ID ’:’

66 ‘permit ’

67 ("on’ role=[CommunityRole])?

68 (7(7 parametersx=[Artifact|[","] 7)")?

69 (guard=Guard)?

70 ("triggered’ ’by’ trigger=Event)?

71 ("expired” by’ (finish_event=EventExpression)?)?
72 (event _guard=Guard)?

73

74 Guard: [’ condition=Condition '] ’;

75

5
76 Condition: /\([")]=\)[["\]]*/:

7

78 EventExpression: op=AndExpression (&’ op=AndExpression)x;

79 AndExpression: op=PrimaryExpression (’|’ op=PrimaryExpression)s;
80 PrimaryExpression: '(° op=EventExpression ')’ | Event;

82 Comment: /#.%/;

83 FQN: ID (7. "ID)*;

Fig.5 Example of part of the DSL consent grammar

10.3 An example of usage

A fragment of our deontic language for the e-consent exam-
ple is shown in Figs.4 and 5.

Figure 4 shows the consent example as written by a user.
Here the resource model is implicit in the community role
specifications, with linkage based on name equivalence, as
discussed in Sect. 4. It defines a community with roles to be
filled by the grantor and grantee. It also declared the support-
ing management roles for a consent enforcer and manager.
These include standing obligations which are created by
the current role so do not include “on...” and “discharged
by...” parts normally found in common deontic expressions,
because they are never discharged and are implicitly created
in association with the current role.

The grantor role declares (in lines 13-27) the speech act
that gives consent and the permits and burdens it conveys.
The guard declared in line 15 limits applicability based on
the subject’s age.

The final section of the community specification (lines
42-72) illustrates the declaration of policies applicable to
the community. They identify design options related to the
likely changes in permissions and obligations associated with
the consent actions.

Note that in the permit valid policy (lines 56-62), the
affected behaviour is implicit in its use in token and action
guards. For example, the policy affects the AccessEHR per-
mit and consequently it affects the action access_EHR as this
action depends on it.

The last two lines indicate that the roles in this community
will each need to be bound to an appropriate party in the
enterprise.

Figure 5 shows an illustrative part of the grammar gen-
erated to support the deontic aspects of the DSL described
above. (The full grammar is too long to include here in its
entirety.)

The result of parsing the consent example, using this
grammar, is a machine processable structure suitable for
interpretation of the design. For example, Fig. 6 shows a visu-
alization of the metamodel it represents.

Comparison of this figure to the metamodel in the ODP-EL.
shows that there are significant differences. This is one of the
consequences of the rapid prototyping approach taken, since
there are none of the architectural considerations applied
that contributed to the drafting of the original standard. If
a different set of use cases had been chosen for the DSL
development, a different structure would probably have been
produced.

The example given here has illustrated how different spec-
ification components can be processed during integration.
What we have not shown is the application of consistency
checking to the resultant whole. When system evolution takes
place, the individual steps will need to be repeated and the

@ Springer

P.Linington et al.

750
odpdeontic\
© Enum
(© Model
name : ID
= variants : optional<list[ID]>
objects 0..%|
communities 0..*|
© «abslram
==/ EnterpriseObject
odppolicy\
—> -
«abstracts © COmmUnIty) «abstract
ActiveEO name : ID —T> Rule <}—
objective : STRING
lifils_role|
olicies 0..
© 2 CommunltyRoIe roles 0. © Bolicy, © [= «abstraces |
i name : ID e name : ID ‘ Behavmur
type : 1D etting_|behaviour —
role| 3
ctions 0.%| envelope) linitial_value
bstract bstract)
"‘/1\csti,gn”< © Events ©PolicyEnveIope ©P(:;1ic§/\(/c;l:e © PolicySettingBehaviour
’ C) C)
welppe_rules 1.
tokens 0..*|
rol © SpeechAct ©EnvelcpeRuIe ©Duration ‘
name : ID rule : STRING e
4
r «abstract» . *| >
DeonticToken r artifacts 0.4
—
parties 1..
rigdrs_even events 0.
) uard =
©Permit ©Embargo © Banden ©BasicAction
TaeiD name : ID name : ID FameiD
= action : ID violation : optional<BOOL> £
XX P - ters g
finish{_event| guard| lipgers/eyent|
trigger evenjt_guard bua i
quent_gguatd guard
© EventExpression|__finish_event] © Gllard © Eveng [parameters 0.
e
— condition : Condition name: ID
parameters 0.
artifacts 1..%]
op ©AndExpression ©Artlfact
—_— name: ID
4
op 0.4 properties 0..*|
©Property
PrimaryExpression
(©rrimayopressin name 0
type : ID

Fig.6 The resulting metamodel

consistency checking redone. This process will need to be
iterated until no problems remain.

11 Related work

We have already summarized the work on ODP that led up
to this work, and the digital health standardization work used

@ Springer

in our case study. The remainder of this section covers other
areas of parallel activity.

11.1 Resource models

There are many individual pieces of resource modelling, but
perhaps the most coherent framework supporting this kind of
activity is that carried out to define the Unified Foundation
Ontology [16]. This has a very broad field of application, but

Using DSLs to manage...

751

its use to represent legal and governance-related concepts is
particularly relevant here. For example, [15] concentrates on
an ontology of legal positions and how they can be described
using the theory of constitutional rights, as proposed by the
philosopher of law Robert Alexy [6]. This in turn extends
the system of legal positions proposed by the jurist Wes-
ley Hohfeld that includes eight fundamental legal concepts
(right, duty, no-right, privilege, power, liability, disability
and immunity) and their correlative positions [19]. These
are positions with a counterpart in the same legal relation,
such as duty in relation to right (for example, “John’s duty
to pay his debt to Mary” is “Mary’s right that John pay his
debt to her”.).

The emphasis of the ODP Enterprise Language is more
on organizational structure, and associated governance and
accountability rules, permitting the tracing of responsibilities
across actors in the system.

11.2 Standardization frameworks

There are also various standardization activities aimed at the
creation of frameworks for expressing and exchanging infor-
mation about legal constraints. Of particular interest are the
Open Digital Rights Language [31] and the Semantics of
Business Vocabulary and Business Rules [32].

11.3 Semantic tokens

We have focused here on deontic tokens, but there are
many other uses of tokens in behavioural specifications. In
particular, we need to distinguish these from security and
authorization tokens. Such tokens may have some deontic
properties, or they may be simple key values that enable
access but do not allow any reasoning about obligations.
A typical example is the OAuth2.0 authorization protocol
[30], which uses uninterpreted access tokens to support client
access to controlled data.

Both the OAuth2.0 authorization protocol and the FHIR
resource models provide mechanisms for controlling the
applicability of tokens based on qualification in terms of
declaration of the scopes in which they can be applied. This
allows access control options to be supported using a user-
friendly interface (rather than a granular scope language),
which is quite empowering for users since it gives them
many options to select in a user interface. However, users
can sometimes find this overwhelming, due to the complex-
ity of available choices and the need for familiarity with the
scope structure.

Another approach to simplifying user navigation is given
inthe US federal Trusted Exchange Framework and Common
Agreement (TEFCA) [27]. While the expressions of scope
provide lower level constraints on data access rules, the new
requirements developed by the US TEFCA agreements pro-

vide higher-level, organizational constraints in line with the
deontic token semantics. The TEFCA agreements specify
rules for participants in the health information exchange net-
work defining who is allowed to query data for what purpose
and who is required to respond. This model puts signifi-
cant trust in the participants but also requires monitoring of
responses by the TEFCA coordinating authorities to ensure
that responses are in line with privacy obligations and other
regulatory requirements. TEFCA future agreements environ-
ment would significantly benefit from the richness of deontic
and accountability rules available from our policy language.
This will, in particular, be required in order to support the
consumer-oriented principles regarding their data sharing
through the networks. These principles are

1. providing permissions (that is, authorization) to con-
sumers to query health data about themselves that may
be spread across multiple providers,

2. ensuring “rights to know” for consumers when any
provider or other party queries data about themselves;
and

3. giving the ability to consumers to configure what is shared
about themselves.

11.4 Policy languages

There have been many proposals for policy definition lan-
guages, dating back to trailblazing definitions, such as Ponder
[9], and areview can be found in [17]. However, the main fea-
tures introduced in the ODP Enterprise Language that these
language definitions lack are the concept of a policy enve-
lope and of the associated need to place constraints that must
be satisfied by the policy in use if the system specified is to
remain well-behaved. Without such constraints, an inappro-
priate policy can undermine the system’s objectives.

11.5 Co-evolution

Whenever two or more software artefacts are interdependent,
such that changes in one necessitate changes in the others
to maintain global consistency, we refer to this as coupled
software transformation or co-evolution [22]. In the context
of domain-specific languages (DSLs), any changes to the
grammar (or metamodel) require corresponding updates to
all related programs or models to preserve consistency. A
comprehensive overview of various approaches to this issue
can be found in [18]. Our current DSL-based approach does
not support automatic co-evolution, and addressing this lim-
itation is deferred to future work.

@ Springer

752

P.Linington et al.

12 Conclusions and future directions

We have reviewed two techniques for structuring and manag-
ing the evolution of enterprise specifications. We have also
shown how the creation of the associated designs can be
simplified by defining domain-specific languages tailored to
their representation. However, this is just the first step in cre-
ating a tool-chain for deploying such designs. The ability to
represent and browse the metamodel in use simplifies the
communication of the design to implementors and maintain-
ers.

Using the same description, we can foresee tooling to
generate representations for deontic tokens and channels for
transferring them. The techniques required are well known,
dating back to the days of remote procedure call and beyond.

More challenging would be the integration of token
passing with components involved in the management and
policing of the deontic constraints themselves. One might
draw parallels here with scheduling functions to be found in
workflow systems. When an obligation is passed to an active
object, it becomes part of the body of information to be used
in selecting the actions to be initiated in order to discharge
the obligation.

The resulting systems are likely to exploit a variety of
technologies in addition to language processing. There will
be a role, for instance, for model checkers and constraint
solvers. There may also be a place for generative Al, although
acritical review of its capabilities at present (see, for example,
[8]) shows a gulf between mimicry and conscious design.

Other ODP Enterprise Language concepts can help man-
age change or evolution of the complex enterprise systems,
and we plan to support some of these in the future. For exam-
ple, the concept of a community contract allows for dynamic
changes in configuration, by adding new roles, creating new
communities or establishing community federations. These
would all benefit from the use of deontic tokens, policies and
the associated mechanisms for detecting policy conflicts and
dealing with their resolution.

We are considering applying deontic and accountability
concepts to serve as input to certain guardrails that can apply
to behaviour of Al agents, in the context of their interaction
with humans in complex enterprise systems. This is of partic-
ular value in systems which involve both human and Al agent
actors, such as in digital health, which require clear expres-
sion of accountability, even in potentially complex chains of
delegation across different types of actors.

There are many challenges still to be faced in exploring
this vision.

We also believe that there would be value in investigating
whether the ODP deontic and accountability concepts can
be mapped onto various FHIR Resources, possibly as design
patterns over FHIR Resources. This may be of benefit for
simpler use cases where the use of DSL may not be necessary.

@ Springer

Acknowledgements The authors would like to acknowledge the major
contribution made by Antonio Vallecillo to the development of the
ODP standards and to the Enterprise Language in particular. He worked
within the standards organization to clarify the concepts relating to poli-
cies and to the use of deontic tokens, and his contributions have added
greatly to the precision and expressive power of these standards.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. ISO/IEC IS 10746-1, Information Technology — Open Distributed
Processing — Reference Model: Overview. Also published as ITU-
T Recommendation X.901 (1998)

2. ISO/IEC IS 10746-2, Information Technology — Open Distributed
Processing — Reference Model: Foundations. Also published as
ITU-T Recommendation X.902 (2009)

3. ISO/IEC IS 10746-3, Information Technology — Open Distributed
Processing — Reference Model: Architecture. Also published as
ITU-T Recommendation X.903 (2009)

4. ISO/IEC IS 15414, Information Technology - Open Distributed
Processing - Enterprise Language 3rd edn. Also published as ITU-
T Recommendation X.911 (2015)

5. ISO/IEC IS 19793, Information Technology — Open Distributed
Processing — Use of UML for ODP System Specifications. Also
published as ITU-T Recommendation X.906 (2014)

6. Alexy R., Rivers J: A Theory of Constitutional Rights. Oxford
University Press (2009)

7. Bettini, L.: Implementing Domain Specific Languages with Xtext
and Xtend, 2nd edn. Packt Publishing (2016)

8. Cdmara, J., Troya, J., Burgueilo, L., Vallecillo, A.: On the assess-
ment of generative Al in modeling tasks: an experience report
with chatgpt and uml. Softw. Syst. Model 42(22), 781-793 (2023).
https://doi.org/10.1007/s10270-023-01105-5

9. Damianou, N., Dulay, N., Lupu, E., Sloman, S.: Ponder: A
language for specifying security and management policies for dis-
tributed systems. the language specification - version 2.2. Technical
Report DoC 2000/1, Imperial College of Science Technology and
Medicine, Department of Computing, (2000)

10. Dejanovi¢, Igor, Dejanovi¢, Mirjana, Vidakovi¢, Jovana, Nikolic,
Sinisa: Pyflies: A domain-specific language for designing experi-
ments in psychology. Applied Sciences 11(17), 27 (2021) https://
www.mdpi.com/2076-3417/11/17/7823

11. Dejanovié¢, Igor, Vaderna, Renata, Milosavljevi¢, Gordana,
Vukovi¢, Zeljko: TextX: A python tool for domain-specific
languages implementation. Knowledge-Based Systems 115,
1-4 (2017) http://www.sciencedirect.com/science/article/pii/
S0950705116304178

12. Fast Healthcare Interoperability Resources V5.0.0, (2023). http://
hl7.org/thir/R5/

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10270-023-01105-5
https://www.mdpi.com/2076-3417/11/17/7823
https://www.mdpi.com/2076-3417/11/17/7823
http://www.sciencedirect.com/science/article/pii/S0950705116304178
http://www.sciencedirect.com/science/article/pii/S0950705116304178
http://hl7.org/fhir/R5/
http://hl7.org/fhir/R5/

Using DSLs to manage...

753

13.

14.

15.

16.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

Fast Healthcare Interoperability ~ Resources: Interna-
tional Patient Summary, (2024). http://hl7.org/fhir/uv/ips/
ImplementationGuide/hl7.thir.uv.ips

Fast Healthcare Interoperability Resources: Consent, (2023).
https://build.fhir.org/consent.html

Griffo, C.L., Almeida, J.P.A., Guizzardi, G.: Legal Theories and
Judicial Decision-Making: An Ontological Analysis, volume 330
of Frontiers in Artificial Intelligence and Applications, pages 63—
76. 10S Press, (2020)

Guizzardi, G., Benevides, A.B., Fonseca, C.M., Porello, D.,
Almeida, T., Jodo, P.A., Sales, P.: UFO: Unified foundational ontol-
ogy. Appl. Ontol. 17(1), 167-210 (2022)

. Han, W., Lei, C.: A survey on policy languages in network and

security management. Comput. Netw. 56(1), 477-489 (2012)

. Hebig, Regina, Khelladi, Djamel Eddine, Bendraou, Reda:

Approaches to co-evolution of metamodels and models: a survey.
IEEE Trans. Softw. Eng. 43(5), 396-414 (2016)

Wesley Newcomb Hohfeld: Some fundamental legal conceptions
as applied in judicial reasoning. Yale Law J. 23(1), 16-59 (1913)
Johanson, Arne N., Hasselbring, Wilhelm: Effectiveness and effi-
ciency of a domain-specific language for high-performance marine
ecosystem simulation: a controlled experiment. Empir. Softw. Eng.
22(4), 2206-2236 (2016)

Kosar, Tomaz, Zhenli, Lu., Mernik, Marjan, Horvat, Marjan,
Crepinsek, Matej: A case study on the design and implementa-
tion of a platform for hand rehabilitation. Appl. Sci. 11(1), 389
(2021)

Lammel, R.: Coupled software transformations revisited. In Pro-
ceedings of the 2016 ACM SIGPLAN International Conference on
Software Language Engineering, pages 239-252, (2016)
Linington, P. F., Milosevic, Z., Tanaka, A., Vallecillo, A.: Building
Enterprise Systems with ODP: An Introduction to Open Distributed
Processing, 1st Edition. Chapman&Hall/CRC Innovations in Soft-
ware Engineering and Software Development, (2011)

Linington, P. F., Miyazaki, H., Vallecillo, A.: Obligations and Dele-
gation in the ODP Enterprise Language. In /[EEE 16th International
Enterprise Distributed Computing conference, (2012)

Linington, P.F.: Policy specification: Meeting changing require-
ments without breaking the system design contract. In Tenth
IEEE International Enterprise Distributed Object Computing Con-
Sference (EDOC 2006), (2006). https://doi.org/10.1109/EDOCW.
2006.81.

Linington, P.F., Milosevic, Z., Cole, J., Gibson, S., Kulkarni, S.,
Neal, S.: A unified behavioural model and a contract language for
extended enterprise. Data and Knowledge Engineering, 51(1):5—
29, (2004). Contact-driven coordination and collaboration in the
Internet context

Mandel, Joshua C., Pollak, J.P., Mandl, Kenneth D.: The patient
role in a federal national-scale health information exchange. J. Med.
Internet Res. 24(11), e41750 (2022)

Mernik, M., Heering, J., Sloane, A.M.: When and how to develop
domain-specific languages. ACM Comput. Surv. (CSUR) 37(4),
316-344 (2005). https://doi.org/10.1145/1118890.1118892
Milosevic, Z., Pyefinch, F.: Computable Consent - From Regula-
tory, Legislative, and Organizational Policies to Security Policies.
In Enterprise Design, Operations, and Computing. EDOC 2022.
Lecture Notes in Computer Science, vol 13585, (2022). https://doi.
org/10.1007/978-3-031-17604-3_1

The OAuth 2.0 Authorization Framework, (2018). https:/
datatracker.ietf.org/doc/html/rfc6749

ODRL Information Model 2.2, (2018). https://www.w3.org/TR/
odrl-model/

Semantics Of Business Vocabulary And Business Rules, (2019).
https://www.omg.org/spec/SBVR/1.5/About-SBVR

Comparing textX to other tools. http://textx.github.io/textX/latest/
about/comparison/

34. textX grammar. http://textx.github.io/textX/latest/grammar/
35. Language Engineering for Everyone!, (2015). https://eclipse.dev/

Xtext/index.html

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Peter Linington is Emeritus Pro-
fessor of Computer Communica-
tion at the University of Kent,
UK. His research interest cover a
range of distributed systems and
networking topics, particularly-
modelling at the boundary between
computational and business pro-
cess views. He has been actively-
involved in international standard-
ization of OSI and ODP over a
period of forty years.

Zoran Milosevic is a Principal
at Deontik, Australia, a boutique
consulting business specializing in
enterprise systems planning, devel-
opment, and deployment, particu-
larly in digital health, finance, and
digital twins. His research inter-
ests encompass enterprise archi-
tecture, interoperability, agent Al,
and computable policies, while
also contributing to HL7, ISO and
OMG standards over years.Zoran
was the founder of the EDOC
(Enterprise Design and Operations
Conference), a well-established

event attracting industry leaders, researchers, and academics. He is a
Senior Member of IEEE, Fellow of the Australian Computer Society, a
founding member of the Australasian Institute for Digital Health, and
a passionate advocate for the ethical and responsible development of
technology.

Akira Tanaka consulting company
in Japan, specialized in applying
viewpoints and model-based
approaches to software develop-
ment. He has been involved in
RM-ODP standardization from its
early days. He led the ODP com-
mittee of INTAP in Japan, par-
ticipated frequently in EDOC’s
WODPEC. He was also active in
OMG, including as a contribu-
tor to the UML Profile for EAI
specification and UML Profile and
Metamodel for Services (UPMS)
RFP. Further information can be

found at http://www.view5.co.jp/e/.

@ Springer

http://hl7.org/fhir/uv/ips/ImplementationGuide/hl7.fhir.uv.ips
http://hl7.org/fhir/uv/ips/ImplementationGuide/hl7.fhir.uv.ips
https://build.fhir.org/consent.html
https://doi.org/10.1109/EDOCW.2006.81.
https://doi.org/10.1109/EDOCW.2006.81.
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1007/978-3-031-17604-3_1
https://doi.org/10.1007/978-3-031-17604-3_1
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://www.w3.org/TR/odrl-model/
https://www.w3.org/TR/odrl-model/
https://www.omg.org/spec/SBVR/1.5/About-SBVR
http://textx.github.io/textX/latest/about/comparison/
http://textx.github.io/textX/latest/about/comparison/
http://textx.github.io/textX/latest/grammar/
https://eclipse.dev/Xtext/index.html
https://eclipse.dev/Xtext/index.html
http://www.view5.co.jp/e/

754

P.Linington et al.

Source Software (FLOSS) projects.

@ Springer

Igor Dejanovi¢ is a Professor
of Computer Science at the Uni-
versity of Novi Sad, Serbia. His
research primarily focuses on Soft-
ware Language Engineering, with-
expertise in meta-modeling,
domain-specific languages, and
parsing techniques. In addition to
his academic work, he runs a bou-
tique consulting business thatap-
plies his research insights to real-
world industry challenges. An
activecontributor to the open-
source community, [gor maintains
several Free/Libre and Open

	Using DSLs to manage consistency in long-lived enterprise language specifications
	Abstract
	1 Introduction
	2 What is a policy?
	3 Deontic Tokens
	4 A tool-building roadmap
	5 An example of system evolution
	6 Factoring out obligations
	7 Software engineering problems
	8 Language support
	9 Domain Specific Languages
	10 From specification to implementation
	10.1 Available tools
	10.2 Development of a DSL
	10.3 An example of usage

	11 Related work
	11.1 Resource models
	11.2 Standardization frameworks
	11.3 Semantic tokens
	11.4 Policy languages
	11.5 Co-evolution

	12 Conclusions and future directions
	Acknowledgements
	References

