A unified behavioural model and a contract

language for extended enterprise !

P.F. Linington?, Z. Milosevic?, J. Cole®, S. GibsonP?,
S. Kulkarni®, S. Neal®

aUniversity of Kent, Canterbury, Kent CT2 7TNF UK

b Distributed Systems Technology Centre, The University of Queensland, Brisbane,
QLD 4072, Australia

Abstract

This paper presents a coordination model for expressing behaviour in an extended
enterprise. Our model is unified because it enables the same style of expressions
for describing behaviour/structure in a self-contained enterprise and for describing
cross-enterprise behaviour /structure. This model can support a broad range of mod-
elling activities but the specific focus of this paper is on deriving the key elements
of a domain language primarily targeted at expressing and monitoring behavioural
conditions stated in business contracts. We also show how business contracts serve
as a unifying mechanism for describing interactions in the extended enterprise.

Key words: E-Commerce, Contracts, Enterprise Specification, Cooperative work,
Web Applications/ XML

Email addresses: pf1l@kent.ac.uk (P.F. Linington), zoran@dstc.edu.au (Z.

Milosevic), colej@dstc.edu.au (J. Cole), sgibson@dstc.edu.au (S. Gibson),
sachink@dstc.edu.au (S. Kulkarni), sn7@kent.ac.uk (S. Neal).
I The work reported has been funded in part by the Cooperative Research Centre
for Enterprise Distributed Systems Technology (DSTC) through the Australian Fed-
eral Government’s CRC Programme (Department of Industry, Science & Resources).
Collaboration was supported by the Innovation Access Programme-International
Science and Technology, an initiative of the Government’s Innovation Statement,
Backing Australia’s Ability.

Preprint submitted to Elsevier Science 5 December 2003

1 Introduction

Web Services capabilities raise the potential of distributed computing to a
new level. As with previous generations of middleware technologies they will
support integration of applications - in this case over the Internet. In addition,
they will increasingly enable closer and more direct involvement of autonomous
systems such as agents, organizations and people to be linked together into
the extended enterprise — to achieve collaborative benefits through underly-
ing business processes and other automated arrangements. These linkages are
increasingly established on a dynamic and on-demand basis and may have a
limited life cycle. In creating such linkages, however, these systems will also
tend to preserve a certain level of autonomy and will be unlikely to give others
unlimited access to their resources and services. In addition, they will require
expressions of mutual obligations in the context of their collaboration and
expression of corrective measures in cases where parties fail to perform their
promised contributions to such a collaboration.

These broader sets of requirements, directly resulting from the need for more
explicit recognition of a social and enterprise context for the applications run-
ning over Web Services imply a need for richer coordination models than the
previous generation of middleware technologies. Thus, although the area of co-
ordination models and languages has been a subject of active research over the
last decade or so [1] [15] [10], the Internet context and the autonomous nature
of agents call for an extended way of specifying behavioural constraints in col-
laborative arrangements. In addition to describing basic behaviour using, for
example, sequential, parallel, or temporal constraints and non-deterministic
choice, there is a need to describe modal constraints on behaviour such as per-
missions, prohibitions, obligations and the holding of rights and authorities.
We refer to these broader sets of constraints as enterprise policies. They have
been studied as part of disciplines such as deontic logic, normative systems
and multi-agent systems, to name but a few.

In the Internet context, most of the notable work dealing with the problem of
coordination has been carried out as part of various Web Service standardiza-
tion efforts. The focus here is on the expression of basic behaviour constraints
as mentioned above. For example, the BPEL initiative [2] is defining coordina-
tion concepts that can be applied to specify coordination of internal business
processes on one hand and for the specification of business protocols between
autonomous entities i.e. cross-organizational behaviour aspects, on the other
hand. Examples of basic behaviour constraints for the internal business pro-
cesses in BPEL are: sequence (for sequential execution of individual activities
in the business process), flow (for concurrent execution of activities), switch
(allowing the selection of one branch of activities from a set of choices), wait
(for a given period of time, or until some deadline) and pick (allowing the

thread to block and wait for a message or for a time-out alarm to go off).
Examples of basic behaviour constraints for cross-organizational interactions
in BPEL are the concept of partner links, which describe conversational re-
lationships between the services of two different partners and the concept of
business partner, representing capabilities of a trading partner in terms of a
subset of partner links.

A step towards a somewhat richer support for coordination in terms of the
support for enterprise policy expression is the recent work on the Web Service
Level Agreement (WSLA) language. A WSLA is an agreement between a
service provider and a service requester using Web Services and it defines
the obligations of both parties with respect to the service parameters (e.g.
availability, response time and throughput). WSLA is specifically developed
for expressing Web Service parameters, including their measurement aspects
(both basic metrics and aggregate metrics) and the operations required for
monitoring and managing service [4].

Service Level Agreements (SLAs) can be regarded as a special kind of con-
tract concerned with the obligations regarding service level fulfilment and the
WSLA specification is concerned with non-functional aspects of service. The
specification of service parameters in WSLAs complements the behavioural
specification expressed in the Web Service Definition Language (WSDL).

While WSLA focuses on technical aspects of services there is a need to address
the business aspects of services, more specifically business level agreements,
dealing with a higher layer in the Web Service stack. The business aspects
of services need to deal with broader issues related to the enterprise policy
concerns and the integration with other enterprise systems at the application
and not the middleware layer.

This paper presents our solution for modelling coordination aspects of business
level interactions over Web Services. The solution is based on our previously
developed policy framework [12], influenced by the ODP community model [7]
[9], and the results developed since then, as published in [13] [17] [19] [3]. The
community model is aimed at describing cooperation between distributed and
autonomous systems from a system-theoretic perspective. It provides a unified
expression of basic behavioural constraints, which can be applied to model in-
ternal enterprise behaviour as well as cross-organizational interactions. It also
provides a foundation to model the modal constraints and an underpinning
model for describing these constraints is that of a contract. The definition
of a contract is taken from the system-theoretic perspective, as “an agree-
ment governing part of collective behaviour of a set of objects”, and specifies
obligations, permissions and prohibitions for the objects in the community.

This model can be used to express basic behaviour and policies within an en-

terprise, but it can equally be applied in the cross-enterprise context. While in
the intra-enterprise context a contract sets out internal organizational policies,
in the inter-enterprise context a contract reflects mutual agreement between
organizations and it often has legally binding properties. Thus, the community
model in the inter-enterprise context can address the concerns that are within
the realm of legal or business contracts.

In cases where autonomous entities are filling roles in the community, and
in particular in an inter-enterprise setting, it is possible that they may be-
have in a different way from that prescribed by their contract. Under these
circumstances there is a need to implement monitoring mechanisms that will
allow the detection of non-compliant enterprise behaviour. This is evidenced
by the increasing demands from business for real-time monitoring of their ac-
tivities internally and as part of the extended enterprise. Community models
can also be exploited to support monitoring of activities in the extended en-
terprise; they serve as a specification of expected behaviour, which needs to be
compared to the actual behaviour. In this paper we show the use of the com-
munity model in developing a contract language, which can be used to support
event-based monitoring of activities prescribed by the business contract in the
extended enterprise.

This paper is structured as follows. In the next section we provide a descrip-
tion of our underlying community model for enterprise object interaction and
explain how it exploits the concepts of community, role, policies, modal con-
trol objects such as permits and burdens and their management, temporal
constraints, and the composition and grouping of these concepts in relation
to each other. The third section presents the use of the community model
to describe interactions in the extended enterprise, as typically governed by
a contract of some kind. The fourth section introduces the business contract
language (BCL) which is based on the community model and which has been
developed to support monitoring of the behaviour of trading partners and
their services in the extended enterprise. The fifth section illustrates this by
an example of a typical business contract such as a Service Level Agreement.
The sixth section relates our work to similar efforts in the area. The paper
concludes by indicating future directions.

2 Community model

One of the things that distinguishes the specification of business contracts
from many traditional computer science problems is the richness of structure
in business organizations and in the multi-party interactions found in such
organizations. We can see this in two aspects of the structural descriptions:
the rich set of entities in a business community and the rich set of participants

in the interactions they are involved in. In both these cases, there is a need
to bring together a number of very different stake-holders and to identify
recurring patterns in many different circumstances.

The ODP reference model [5] [6] [7] [8], on which many of our specification
techniques are based, introduces the idea of a template for representing pat-
terns of behaviour, and of roles in a template to provide a mechanism for its
formal parameterization. A role is a placeholder in the template that is, in any
particular pattern instance, filled by a specific object showing the behaviour
expected from that aspect of the pattern. In communities, the main aim of
introducing templates is to build larger structures, and so to express the corre-
lation of actions performed by the different participants in the community. In
actions, the focus is inward, looking at the way separate processes synchronise
by playing a different sort of role, this time a role in the template for a shared
action. These two perspectives are examined in turn.

2.1 Definition of community

The idea behind modelling an enterprise as a series of interrelated communities
is to build up the constraints that govern what the enterprise must do from
a series of separately defined pieces of behaviour, each with a well defined
objective. Thus, in modelling terms, a community is a configuration of objects
that interact to achieve some shared goal or objective. The community brings
out the objective and the behaviour necessary to achieve it in a way that is
independent of the details of the resources needed to achieve this behaviour.
For example, the obligations involved in a commercial transaction in which
goods are delivered and payment made can be described in terms of the roles
of a general sales community that can be applied to transactions involving
different goods, which take place between different kinds of organization.

The complete behaviour of the enterprise may eventually involve parts of
the enterprise participating in a number of separately defined communities
that have different objectives. The individual communities may describe, for
example, the general framework for a trading process, application specific
details of some parts of it (maybe as sub-communities) and possibly separate
audit or security requirements. These separate communities may be nested or
they may be linked by overlap through sharing one or more participants.

The key to the flexible combination and reuse of communities is to decouple
the specification of the necessary behaviour from the statement of the objects
involved by using a number of roles as formal parameters. The definition of a
community type involves the declaration of a number of typed roles, and the
community’s behaviour is stated in terms of these community roles. When a

community instance is created, these community roles are filled by particular
objects, whose types must match the type required, and these objects are
thereby constrained to behave in a way consistent with the community’s stated
behaviour. As long as the observable behaviour of the community is consistent
with its definition, the nature of the objects filling the various community roles
can colour the actions of the community as a whole. The actual behaviour
is selected from the alternative possibilities allowed for either explicitly or
implicitly in the community design.

If the details of the way a community’s members interact are hidden, the result
is itself an object. This is called the community’s equivalent object, and, be-
ing an object, it is able to fill suitable roles in other communities. In this way,
hierarchies of communities can be created, representing sets of rules of pro-
gressively narrowing scope. This process can also be extended to progressively
higher levels of abstraction, introducing, for example, overarching communi-
ties to represent, where appropriate, relevant constraints from aspects of the
applicable legal system.

Thus communities can be combined in a number of ways. Two communities
may be:

e related by having a role from each of the communities filled by a single
object; this object is therefore subject to two sets of overlapping constraints,
so that the two communities effectively constrain each other via it;

e related by having one community fill a role in the other; the inner community
can be seem as an object that fills a role in the outer community;

e related by links in a specification, and so requiring a role in one commu-
nity always to be filled by the object that fills a linked role in the other
community.

In general, one object can fill several roles in a single community instance;
this one object is then constrained to perform pieces of behaviour that could
have been given separately to a number of distinct objects. This is generally
a useful flexibility to allow the efficient and balanced use of resources, but
the combination may sometimes not be so desirable. The classic example is
the requirement for separation of duties often found in security frameworks.
This leads to the need for community specifications to be able to express
a set of role-filling constraints, stating, for example, that a particular pair
of community roles, such as proposing and approving a purchase, must not
be filled by the same object instance. The exact form of constraint allowed
depends on the nature of the community notation used, but navigation-based
constraints expressed in a notation like OCL could well be applied.

Although creation of many simple communities can be expressed by a single
process of instantiation, in which all the roles are filled and the bindings thus

formed are seen as static thereafter, something more dynamic is often needed.
However, the creation of a new community role and the filling of a community
role by a new object are both actions that can be controlled by the community
behaviour. Thus in a community describing the procedures of a committee, for
example, the behaviour may identify that there is a set of committee member
roles and a procedure for creating an additional role in this set and filling it
with an object that had not previously been involved. (Note here again that
a one member one vote requirement would also lead to a requirement that no
single object should fill more than one of these roles.) If there is a need for
complete flexibility, reflective techniques could be applied to describe how a
community might change its own behaviour — having a process to change its
own rules of procedure!

The community concept is generic enough to describe not only organizational
structures such as contracts and companies but also lighter-weight structures
such as the agents involved in the collection of various items related to an as-
pect of contract execution such as the handling of purchase orders or invoices.
The coordinated group of agents is a simple form of local community.

2.2 Basic behaviour

So, what form does the specification of behaviour take in community models?
Basic behaviour is expressed as constraints on the set of actions that can occur,
and on the permissible sequences in which they can occur. Each action in the
defined behaviour is associated with at least one role; however, isolated actions
are not as interesting or expressive as interactions involving more than one role,
since interactions immediately involve communication between the objects
filling the roles. It should be obvious that the parties involved in an interaction
are not interchangeable; there is generally an asymmetry, with different flows
of information between the various pairings of objects involved. If we focus
on the action type, independent of where in the overall behaviour it occurs,
we can again apply the role concept, but this time to distinguish between the
different responsibilities relative to the action. These are action-roles; they
allow the definition of an action type to express the action’s semantics in terms
of its requirements and consequences for the participants. Again, this provides
formal parameters for the definitions, which can be filled by the actual objects
involved in an instance of the action type. For example, an interaction that
results in the transfer of a simple data item might have action roles indicating
that there needs to be both a producer and a consumer of the data item.
A slightly more complex role pattern can be seen in the four-step send and
receive pattern of a typical client-server interaction.

However, interactions within or between organizations may involve a wider

range of roles. Consider, for example, a publish call for proposals interaction
in a tendering scenario. This may be seen as a single interaction in describing
the steps in tender management, with action roles for the:

author, who prepares the call;

controller, who approves the correctness and authorizes its release;

set of suppliers who should receive the call;

archivist, who makes and maintains a non-repudiable copy for audit pur-
poses.

Here the action is a quite abstract representation of a key step in the tendering
process that the specifier has chosen to make atomic; local procedures could
refine it into a series of finer-grain steps (making up the behaviour of a com-
munity undertaking this step), but a top-level view of the tendering process
does not need this level of detail.

The definition of an action template captures the semantics of the intended
action in terms of pre- and post-conditions on the objects filling the action
roles. It identifies a period of time — the duration of the action — within
which the state changes required of these objects must take place. It therefore
provides a weak temporal synchronization constraint on the behaviour of these
objects.

2.8 Modal constraints

A community constrains the behaviour of the objects involved; it qualifies the
wide range of possible behaviours, indicating which of the courses of action
available to the participants are acceptable. It will commonly state what action
a party is obliged to take in a given situation. This is generally a weaker
concept of obligation than defined in, for example, the standard deontic logic,
which regards conflicting obligations as an inconsistency that prevents any
deductions from being made. In the real world, conflicts between contractual
requirements can occur, and a community model for contracts has to allow
analysis of different behaviours, even in the presence of conflict. Thus there is a
need to express violation of the required behaviour and additional obligations
arising from it. We expect a community member to be able to attach a cost
to any sequence of actions, and so to be able to make rational decisions about
what course of action to pursue in the presence of conflict. To assist in doing
this, we attempt to make the changes in obligations resulting from any action
directly apparent.

2.3.1 Permissions, prohibitions, obligations

The modal constraints to be considered are permissions, prohibitions and obli-
gations. The first two deal with possible behaviours, while obligations deal
with expected actual behaviours. This difference is reflected in the compara-
tive difficulty in checking that the requirements are satisfied.

A prohibition on an object engaging in an action role is satisfied so long as
no action is observed to involve the object acting in that role. Any counter-
example is sufficient to show a violation.

A permission for an object to perform an action role is corroborated when
the action is performed without error, but this may take indefinitely long to
observe if the object does not choose to exercise its rights. Observation of an
attempt to perform the action failing in a way that indicates the permission
has been withheld is clear evidence of violation. However, the action may fail
for many reasons, and failure without an indication of why the failure took
place is not clear evidence of lack of a permission. At what point, for example,
does declaring a resource busy every time an attempt is made to use it amount
to a failure to honour the permission to do so?

Finally, an obligation requires an object to engage in some piece of behaviour,
involving participating in particular action roles, and is discharged if the re-
quired behaviour is observed. However, there may be some difficulty in identi-
fying a violation because there are many different levels of urgency that can be
associated with an obligation, and so in practice the situation is only straight-
forward if there is a defined deadline or temporal ordering requirement on the
performance of one or more steps in the required behaviour.

2.8.2 Permits and burdens

One of the complexities in identifying the obligations to be met at the different
stages in the execution of a community’s behaviour is the need to track the
changes associated with each action performed. For example, placing an order
results in an obligation to make a payment at a later stage, while accepting
an order leads to an obligation to deliver the goods or services.

A distinctive feature of the model proposed here is the reification of the modal
constraints, so that transfer of responsibility can be expressed directly as the
passing of a corresponding token. To avoid confusion with unencapsulated con-
straints, we introduce new terminology, calling a reified permission a permit,
and a reified obligation a burden. The concept of a permit is quite similar to
the operating system concept of a capability, except that here it is a specifica-
tion concept, rather than an implementation construct. Using these concepts,
we can express the action of placing an order as communicating not just the

order details but also a burden representing the obligation to deliver the goods
ordered. Initiating the order would also establish a burden for payment locally
on the initiator.

Once a burden has been created, it can be discharged by performing the piece
of behaviour that it requires. The burden may then cease to exist (although,
for periodic or continuing obligations it may continue, but with modified dead-
lines). Alternatively, the burden can, subject to there being suitable permis-
sions, be passed on to another party, thereby transferring the responsibility
it represents. Note therefore that it is not unreasonable for a participant to
hold a burden that requires an action to be carried out when it does not have
a permit to perform the action, as long as it does have a permit to transfer
the burden and an expectation of finding a willing recipient to take it on.
Alternatively, it may have an expectation of receiving the necessary permit
before the burden becomes due.

As an example of this kind of behaviour, consider the placement of a purchase
order where the supplier fulfils the order by using a shipping agent to deliver
the goods. The supplier receives the order together with a burden to deliver the
goods. As a matter of its internal organization, it decides to use a shipping
agent who is responsible for organizing the services of and monitoring the
performance of a suitable carrier. In the high level specification, there is one
action in which the supplier receives the order with a burden to deliver within
a certain time, which it discharges by another action of making the delivery.
This behaviour is refined into a sub-community concerned with delivery, whose
behaviour is made up of a series of steps, in which:

e the supplier transfers the delivery burden to the shipping agent, together
with permits to access the goods and make the delivery;

e the shipping agent selects a carrier and transfers the delivery burden and
associated permits to it, together with a burden to report on successful
delivery. In doing so it also acquires a burden to take corrective action if
it does not receive notification that delivery has taken place within the
specified time. Note that because the selection of the carrier implies the
acceptance of the burden, this action may fail.

e the carrier makes the delivery, and reports the fact, thereby discharging its
burdens.

e receipt of the notification cancels the shipping agent’s monitoring burden.
The process is then complete.

10

Community
Model
Concepts

/ Extended Enterprise Contract

Organisational Contract

Individual Role Extended Enterprise
Enterprise

Fig. 1. Inter-organizational and Intra-organizational communities

2.4 Intra-enterprise and inter-enterprise applications of communities

It should be clear from the examples in the previous sub-section that communi-
ties are well suited to the hierarchical specification of constraints to match the
different management domains involved (see figure 1). Thus the necessary con-
straints on the large scale that govern the cooperation between organizations
engaged in commercial ventures can be expressed as communities in which the
community roles are to be filled by objects representing the organizations con-
cerned in their entirety. These are the minimum necessary constraints needed
to represent the commercial agreements, and are likely to evolve rather slowly.

On a finer scale are the internal divisions of responsibility, representing the
operational structuring into units within the separate organizations, be they
divisions or subsidiaries. These are likely to evolve on a shorter time-scale, and
can do so as long as they continue to be consistent with the inter-organizational
behaviour required. This process can be used repeatedly to represent progres-
sively finer-grained organizational units.

Although the largest-scale currently practical application of these modelling
techniques is to describe relations between enterprises, they could also be used
in the future to represent even larger scale social structures that influence
commercial agreements. Future work might eventually lead to the ability to
represent key aspects of legal structures, particularly those with a quite well
defined scope and ontology, such as tax law or the core rules of property

11

conveyancing.

3 Expressing context for business contracts using communities

3.1 A model for contracts

A specific application of the community model introduced above can be to
express the required behaviour of trading partners in a business contract —
in terms of their basic behaviour constraints and policy constraints as part
of their collaborative arrangement. This behaviour specification can then be
used to support run-time checking of actual behaviour of trading partners
against the required behaviour specified in a contract. We demonstrate how
this community model is used to describe surrounding enterprise models of
the contract management architecture, i.e. a Business Contract Architecture
(BCA), as originally proposed in [16].

In applying the community concept to the expression of contracts, we use
a community to represent each contract. The roles in the community repre-
sent placeholders in a contract proforma, and the objects filling community
roles represent the signatories to the contract. Thus, in modelling terms, the
concept of a contract is a specialization of a community, but other forms of
community may still be used to represent, for example, the internal structures
of organizations without these being formal contracts.

3.2 Use of the community model for contract monitoring

In order for contracts to be monitored automatically, they must be available in
a standard form, such as is provided by the language described in this paper,
and this form must be stored in a repository accessible to the contracting par-
ties. A monitoring component can then access this definition, which consists
of the constituents parts of the specification of communities, such as policies,
roles, event patterns, temporal constraints and states (described in the next
sections). The monitor can then collect events significant to the contract from
the participants or the environment and interpret these in order to determine
whether the contract is being followed. If problems are detected, these can be
reported to an enforcement component that takes suitable corrective actions.
The interactions of these components are shown in figure 2.

Often, incorrect behaviour can be detected immediately, but in more complex
cases, particularly when a party is involved in several contracts at once, it may

12

£
@ Community

Policy

Create BCL
Definitions forXyz —= > Roles
Event Patterns

Temporal

Calculated State a

%
Load BCL Definitions
Real-time
Observations i

Contract

Extended
Enterprise
(XYZ)

S " Monitor

Feedback Loo Violation
M Information

Corrective Measures I - : 1 Contract
L i
.- W ' Enforcer

Fig. 2. The main components involved in contract monitoring

be necessary to observe a number of events before ambiguities of interpretation
can be resolved. These problems of interpretation are discussed in [18] and [20].

Community behaviour is specified in terms of actions the participating objects
can perform. However, for monitoring purposes, we are primarily concerned
with observable events; these events may be the visible result of performing
actions, or they may be other observations of the environment. The collection
and distribution of events can take place in a number of ways, depending
on the level of automation. Information about the events could come from
programs within the enterprises, from people entering data within the system,
from hardware, or from the communications infrastructure. In many cases the
software or hardware will need to be instrumented in order to generate this
information. Events about the creation of new contracts or the binding or
rebinding of signatories to roles are of particular significance to a contract
monitor. Events might be distributed to a monitoring component, or to other
interested parties, by using a publish and subscribe style of event notification
infrastructure.

3.8 Contract Monitoring as a control mechanism

The signatories to the contract act as sources of events that are passed to the
contract monitoring system. Whilst the monitor may be just an observer, it
may well itself generate events in turn. These can be distributed to other parts

13

of the system, or to the monitors of other contracts, possibly at different levels
of abstraction, or may be returned to their originator for further processing.

The events a monitor generates will generally be progress signals, indicating
that some stage of the contract has been completed, or that a violation has
occurred. There are a number of design choices to be made about how tightly
coupled the monitoring component is to the enterprise. At one extreme, it
may be essentially passive, reporting problems to some management authority
for corrective action as necessary. Alternatively, it may respond immediately
to any violation, signalling exceptional events on so short a time-scale that
incorrect events can be aborted. The time-scale that is feasible will depend to
a large extent on the timeliness of the event reports made; inclusion of manual
processes are likely to make tight coupling impractical.

Another issue, as soon as feedback paths are introduced, is to determine the
obligations placed on the monitor. It is possible to imagine an independent
and impartial monitor run by, for example, a regulatory authority, but it is
also possible that the monitoring process is owned and operated by a signatory
to the contract, and that it will give greater priority to the interests of that
party. There might even be multiple monitors, each protecting the interests of
one of the signatories, giving rise to issues of arbitration between monitoring
components.

3.4 The limits of the monitoring system and executive override

The practical realities of contract management require some system override
feature to handle situations outside those foreseen in the contract. In brief,
the reality is that contracts are rarely devoid of ambiguity and rarely specify
what should happen in every possible situation — there is always an element
of interpretation of the contract conditions required. This leaves space for the
signatories to come to some sort of agreement as to how a particular situation
should be interpreted, and to override the system’s coded behaviour with these
details. Another reality is that even if the contract unambiguously specifies
a condition, the parties may choose expediency and opt to ignore a violation
of that condition. For example, the supplier may ignore a minor violation for
late payment because it is not worth the time and effort to follow it up, or to
avoid the reduction of good will that such a penalty may incur.

Once such an override feature is introduced, there are likely to be additional
requirements on contract specification to indicate what the consequences of
common forms of override might be, and there are clear similarities here with
the requirement to express compensating actions found in many workflow
systems.

14

Contract Languages Contract Monitoring

Language (BCL)
Contract Validation /’ Community

. , _

Co mmunlty |:> Contract Negotiation , ’ Policy

Model L Roles

Concepts Contract Monitoring\ Event Patterns
s Temporal
Contract Enforcement ™~ P
a Calculated State

Fig. 3. The contract monitoring domain language

4 Business contract language (BCL)

The community-based approach can support a broad range of modelling activ-
ities, such as deriving key elements of various contract languages (see figure 3).
In this paper we concentrate on a contract monitoring language, developed pri-
marily for the purpose of expressing and monitoring behavioural conditions
stated in business contracts. This language, called the Business Contract Lan-
guage (BCL) is based on two previously separate sets of ideas. One of these
comes from the work at DSTC over the last couple of years on further re-
fining the original BCA design [16], including the development of a family of
languages to express contract semantics (e.g. enterprise policy, event, state
and notification languages [19]) and the application of XML and Web-based
standards for BCL and BCA designs. The other set of ideas comes from sep-
arate work at the University of Kent on enterprise policy specification and
on dynamic verification of design patterns in distributed systems [20], more
recently extended to focus on policy-based checking of B2B contracts [13].
The two groups collaborated earlier on a framework for describing enterprise
policies [12], which is based on the RM-ODP concepts of community and
which has influenced later ODP standardization activities for ODP Enterprise
Language [9].

The expressive power of BCL is in its capability to describe richness of struc-
ture and interactions in business organizations, including the enterprise policy
concepts that are needed for the interpretation of behaviour governed by busi-
ness contracts. Thus, BCL expresses true enterprise concepts, as opposed to
other languages such as BPEL, WSLA and ebXML, that address computation
aspects of behaviour.

BCL uses a number of key modelling elements to express business contracts.
The process normally starts with the definition of a set of communities, which
may be parameterized by the identification of policies. Details of the behaviour
required are expressed using temporal and event-related constraints together
with state conditions. Thus BCL is made up of:

15

e community expressions defining the domain for the definition of roles, role
relationships, and policies, including delegation and accountability policies;
these expressions also state relationships between communities (and thus
contracts, e.g. sub-contracts and other dependencies between contracts);

e policies in contracts that express constraints on behaviour of the contract
signatories, typically obligations, permissions and prohibitions; these con-
straints can take various forms and currently BCL provides support for
expressing temporal, event relationship and state constraints, which can be
superimposed on the basic behaviour expressions;

e temporal constraints that can take a simple form as in the expression of
absolute and relative time points or a more complex form as in sliding time
windows;

e event matching constraints and the relationships for describing composi-
tions of such constraints, possibly further temporally constrained, are ex-
pressed in terms of event patterns; BCL currently supports the following
relationship expressions: causal relationship, temporally ordered sequences
and parallelism;

e state conditions, related to those contract variables whose values can change
in response to conditions such as external triggers and temporal conditions
(e.g. deadlines)

BCL exists in two syntactic forms. In the running system, a portable XML-
based notation is used, and this is the form stored in repository and used
for the encoding of messages describing events and for distributing dynamic
changes to contracts; however, this form is somewhat cumbersome for devel-
opment and, for design purposes, a human-readable language with more con-
ventional concrete syntax is used. A tool has been implemented to parse this
form and generate the XML representation automatically from it; additional
visualization and model-checking facilities are planned for this tool.

The BCL language can be used in a number of ways at different stages in the
contract’s life-cycle. It can be used to define templates, to describe the state of
a contract during execution, or to record elements in a historical trace. These
differ in the strength of value bindings, since a template expresses the range of
possible values but a trace reflects actual observation. The role any particular
language utterance plays cannot be determined from the syntax, since this is
uniform, but is determined by the context in which it occurs.

The power of the BCL language is that it allows the integration of complex
monitoring conditions that include event patterns, temporal conditions and
state conditions into a compact behavioural expression whose evaluation can
ultimately determine whether a policy violation has occurred or not.

16

4.1 Community model

The definition of a community specifies a set of roles, policies, events, and
states; it is hierarchical in form, so that any given community can be related
to its parent and child communities. The community model expressions in
BCL enable the creation and modification of community specifications as well
as dynamically updating the status of a community, including assignments or
re-assignments of roles and policies. The latter can occur during the lifetime
of a community (and thus during business contract execution).

From the observational perspective a community model is involved in the
checking of the validity of events that either change the specification of the
community or signify some community operation (such as policy assignment
or re-assignment during authorization or delegation operations).

BCL includes the concept of a community template and an automated means
for instantiating communities from this template. Instantiation rules associ-
ated with a template define when a new community should be created from
the template and what identifier should be used to identify this new commu-
nity, e.g. it can be specified that the identifier obtained from an event that
triggered creation of this community should be used. The instantiation rules
also include the specification of correlation information which links this com-
munity instance and the separately created items related to this community,
such as the events received by the community and the events generated by
this community. For example, a shipper may be involved in many instances of
the same shipping contract type.

The correlation concept is similar to the BPEL correlation sets concept —
which is used to associate instances of business messages to the instances of
business processes. This similarity will facilitate our planned integration of

BCL and BCA with BPEL technologies.

4.2 Enterprise policy

A significant part of any business contract is made up of the statements that
express deontic constraints of the form elaborated in the section 2.3 and thus
policy expressions play a key role in BCL. A policy expression specifies the
role to which a deontic modality applies, the deontic modality in question
(typically permission, prohibition or obligation) and the behaviour to which
this deontic modality refers. In essence it expresses fragments of behaviour that
need to be monitored to determine compliance of the parties to the contract.
These behaviour fragments range from the specification of primitive behaviour,
i.e. events that directly reflect the actions of parties, to more complicated

17

behaviours that consist of complex event expressions. The latter include:

e event patterns that express some combination of actions of significance to
the contract (e.g. a Purchase Order (PO) received, should be followed by a
PO acknowledgement);

e the expression of state conditions of relevance to the contract (e.g. the total
amount of payment in one month); and

e a range of temporal conditions (e.g. within 5 days from the receipt of the
purchase order).

The BCL semantics specify that the evaluation of a policy is signified where
appropriate by an event which contains the evaluation result. This allows the
user to specify how contract violations are to be handled, for example, simply
by sending notifications to various interested parties or by applying other
policies to internally processed violation events. An example of such a policy
would be to prohibit the supplier from proceeding with further actions until
their violation has been remedied.

4.8 Fvent-patterns

BCL is an event driven language. A BCL event signifies some important oc-
currence with implications for contract condition fulfilment and this is the
central mechanism to support real-time contract monitoring. A BCL event
falls into one of two basic categories, either atomic or complex. A complex
event is described using the concept of an event pattern. The BCL event pat-
tern language is similar to the language described in [14] and supports the
expression of event matching constraints and relationships. The concept of a
complex event also allows us to group events and treat the group as an event
at another level of abstraction.

The monitoring engine will subscribe to the relevant event types so that when
an event of that type occurs the engine will begin the process of contract
condition checking, performing, for example, the detection of event patterns
or the evaluation of policy constraints.

4.4 Calculated States

The monitoring of business activities governed by a contract often requires
checking of certain state information associated with the contract and calcu-
lating its new value in response to the occurrence of some events. BCL provides
two options for calculating values of state variables. One way is calculating
the value on request. For example, if one needs to calculate the amount of a

18

fine based on the time interval since some deadline has passed, it may be more
efficient to perform lazy evaluation, calculating this value only when needed,
rather than via periodic updates. Another option is to calculate the new state
and update it in response to an occurrence of a particular event. Whenever
this event happens, the appropriate calculation is carried out.

Calculated states are self-contained in the sense that they encapsulate the
expression for determining their current value and manage their own updating.
This allows a clean separation of the code handling state information from the
rest of the system.

4.5 Temporal aspects

Temporal constraints are essential to many contracts. They are used to express
conditions related to the contract as a whole, e.g. start and end dates of the
contract or conditions that relate to deontic modalities. Examples of the latter
are deadlines for discharging obligations (e.g. payment should be made one
week after receipt of an invoice) or intervals permitting certain behaviour (e.g.
the times of day to which different bandwidth prices apply). These temporal
elements can be specified in a number of different ways. For example, a contract
may specify recurring intervals, e.g. “goods worth $500 must be purchased
each month”, or specify intervals that are combined with other intervals, as
in “3PM to 6PM during Weekdays”.

BCL provides various options for expressing temporal conditions ranging from
basic expressions such as points in time, durations and deadlines to complex
expressions, such as the sliding time windows.

The most basic specification of time is as an absolute time point; this may be
a literal value, such as “12:00PM, 31 January 2003”. Such a time point may be
used to specify the contract start and end dates, or a deadline for obligations,
such as “the goods must be delivered before the 1st of March”. Time points
may also be specified relative to some other time point, as in “the deadline
for payment is seven days after the goods have been received”.

Some contracts contain expressions of a more complex temporal form. Take
for example a SLA contract specifying that: “there must not be more than
three occurrences of downtime within any one-week period”. There are many
contract conditions that have this basic form, and we refer to this tempo-
ral pattern as a sliding time-window. From the monitoring perspective, the
problem is to detect the occurrence of some condition in the course of a time
window that ‘slides’ over the time line. The time window is characterized by
the window’s width, the specific condition that needs to be checked within the
window, the expressions stating what to do when a condition is found or is

19

not found, and if, appropriate, how to move the window forward.

5 Application to a Service Level Agreement

This section illustrates the use of BCL by considering a simplified example of
a special kind of business contract, namely a Service Level Agreement (SLA),
such as the SLA discussed in [19]. Although this specific example is based
on an industrial SLA we focus only on those aspects that illustrate the ex-
pressive power of BCL and leave out other, more trivial, details. To make
the examples easier to follow, a simple pseudo-code notation derived from the
human-readable notation for BCL is used in the examples; the real imple-

mentation stores a representation of the contracts in its repository in the less
readable XML-based syntax of BCL.

In the example, the user enters into a framework contract with the service sup-
plier, under which more specific sub-contracts are agreed to cover the use of
individual servers. The individual servers provide web servers that must com-
ply with uptime guarantees, and the client purchases space on these servers.
The contracts will conform to the following criteria:

e The framework contract will be for a fixed period of twelve months from an
agreed start date.

e The maximum permitted downtime for any server will be twenty minutes
in any rolling seven-day period, starting at midnight.

e Downtime is defined by there not being HT'TP access to the server.

e In calculating downtime, the contract will exclude any times where:

o 48 hours notice of maintenance has been given to the client,
o emergency maintenance is required,

the client has not paid outstanding invoices by the agreed payment dead-

line, or
o the service has been made unavailable by Force Majeure.

e If the agreed downtime limit has been exceeded, the service provider will,
upon request from the client, credit the client’s account with a pro-rated
charge for one week’s service.

e Invoices are issued at the end of each month; all invoices are to be paid
within 28 days of issue.

e The client is allowed to purchase additional space on other servers, there by
creating additional sub-contracts of framework agreement.

O

The description of the implementation of this SLA given below follows the
structure of section 4.

20

5.1 Community model

The executable version of the contract is modelled as a community. The com-
munity will define the client and supplier roles, basic behaviour required of the
roles and the policies applied to those roles, including the maximum permitted
downtime limit placed upon the supplier, and the obligation for the client to
pay for the service within 28 days of the service starting. The community also
contains definitions of the states and events required by these policies, such
as events representing downtime or the deadline for payment.

The community will declare variables (which we call value containers) used
by any of the polices, states, events and other definitions associated with the
community. For example, the start date of the contract is a value container
whose content is set to a specific date when the contract is created, and the
number of days for invoice payment is a value container that will be referred
to in the event definition representing the payment deadline. The community
definition may also contain the definitions of:

e notification types, stating requirements for the generation of messages to
interested parties as the contract progresses;

e behaviour for updating the structure of the community, such as assigning a
new entity to a role; or

e user defined methods.

Rather than defining a community for each individual contract instance, we
write a community template, which represents a proforma contract. This con-
tains an instantiation rule that states when new instances should be created
from the template.

Community: SLA_Framework
InstantiationRule:
TriggerEvent: ContractAgreed where
ContractAgreed.TemplateIldElement = SLA_Framework
Instanceldentifier: ContractIdElement
CorrelationIdentifierLocation: ContractIdElement
Community: Server

In general, a new instance of the community is created from the template
whenever a defined trigger event is received. The instance identifier for this
community will be obtained from the trigger event’s content; in the example,
the trigger event is a ContractAgreed event with a TemplateldElement indi-
cating the framework contract template. The instance identifier is taken from
the ContractldElement, which is also a field in the ContractAgreed event.
The instantiation rule also specifies the location for correlation information

21

which is used to correlate the events generated by this community or received
by it with the correct community model instance. Here correlation is simply
performed by matching the ContractldElement field in any events observed.

The community template for the contract contains the definitions for value
containers to be filled during contract instantiation. The necessary information
is transferred from the event that created the instance in a way governed by
the declaration of the correlation mechanism.

The framework contract contains the community template for handling the
server sub-contract of the contract, which includes policies for handling down-
time limits. In a particular server contract instance, the sub-community’s tem-
plate instantiation rule will cause a new instance of the sub-community to be
created every time a server-purchase event occurs.

The server sub-community contains policies and some corresponding event
definitions which are used for downtime monitoring for the server. As there
will be multiple servers, the events related to a server’s downtime will have to
be correlated with the appropriate sub-community instance. Similarly, policy
violation events generated within a sub-community instance will have to be
appropriately identified with that instance, and through this, with the appro-
priate server.

The BCL correlation mechanism again ensures that the events received and
generated are correlated with the appropriate community and sub-community
instances. This means that if a server downtime event is generated, that event
is sent to any sub-community which is concerned with the server responsible
for the event. To achieve this, we use the following definition for the sub-
community instantiation rule:

Community: Server
InstantiationRule:
TriggerEvent: NewServerSpacePurchase
Instanceldentifier: ServerIdElement
CorrelationIdentifierLocation: ServerIdElement

5.2 Policies

Consider the availability policy: “The maximum permitted downtime for the
server will be twenty minutes in any rolling seven-day period”. Assume that
there is a complex event that is generated when there have been twenty min-
utes of downtime within a week. This policy can be defined as:

22

Policy: MaximumDowntime
Role: Supplier
Modality: Prohibition
Condition: OverTwentyMinutesDowntime

Within a community, it may be possible to specify policies expressing default
conditions such as “all events that are not explicitly permitted are prohibited”.
We are currently considering the inclusion of such features within BCL. If this
community contained such default policies, it would be possible to specify this
policy as a permission for the downtime to reach twenty minutes in any week.

5.8 FRvent Patterns

The contract specifies that “Downtime is defined by there not being HT'TP
access to the server”. We can assume that there is some program that is
monitoring availability of HT'TP access, which might try accessing the server
at regular intervals. The details of such a program are outside of the scope of
this paper, but we can assume that it generates an AccessDown event when
it detects access is down, and an AccessUp event when it detects that it has
come back up.

We can specify a complex event, a Downtime event, saying that the server was
down between the AccessDown and AccessUp events. We will often need to
perform such a “mapping” from the actual events being generated within the
enterprise into the higher-level events that the contract conditions deal with.

EventType: Downtime

GenerateOn:
AccessDown; AccessUp
// where ’;’ is the sequential composition operator

Notice that after the AccessDown event occurs, the Downtime event becomes
instantiated but is not completed (and thus not yet generated) until the Ac-
cessUp event occurs. It is possible to query the current duration of such a
complex event that has started but not yet completed. This can be impor-
tant, for example, if a sliding window (see below) moves while a complex
event is in progress, since movement of the window itself generates an internal
event which is likely to trigger contractual policies on excessive downtime if
the current Downtime event contributes sufficiently to the cumulative total.
Alternatively, we could use periodic events to trigger a check on some con-
dition, as in the OverTwentyMinutesDowntime event type, which checks the
duration of its corresponding ContractualDowntime event every minute, to see
whether it has yet exceeded twenty minutes.

23

While downtime can be determined in this matter, the contract adds some
additional conditions over what should be considered as effective downtime
for which the supplier is solely responsible and which should thus be used
to reflects their non-performance. Effectively, the complex event Contractual-
Downtime excludes any periods of downtime where any of the following holds:

48 hours notice of maintenance has been given to the client,

emergency maintenance is required,

the client has not paid outstanding invoices by the agreed payment deadline,
service has been made unavailable by Force Majeure.

Scheduled maintenance can be defined as a complex event corresponding to
a ScheduledMaintenanceStart event followed by a ScheduledMaintenanceEnd
event, where a MaintenanceNotification event occurred at least 48 hours be-
fore the ScheduledMaintenanceStart event. Emergency maintenance can be
defined as a complex event corresponding to an EmergencyMaintenanceStart
event followed by an EmergencyMaintenanceEnd event. The events defining
the starts and ends of scheduled and emergency maintenance would have to
be supplied by the enterprises being monitored.

We can represent the period between the deadline for payment of an invoice
and the payment of that invoice by an UnpaidPayment complex event defined
as a PaymentLate event followed by a Payment event. These two events are
quite simple and are not shown here.

We can then define the ContractualDowntime event type to be any period
of downtime that does not overlap with a ScheduledMaintenance event, an
EmergencyMaintenance event or an UnpaidPayment event.

EventType: ContractualDowntime
GenerateOn:
Downtime intersection not (EmergencyMaintenance or
ScheduledMaintenance or
UnpaidPayment)

Here intersection takes two or more event patterns as arguments, and gen-
erates complex events representing the times where matches of the argument
event patterns are both occurring at the same time.

This does not include, however, handling of Force Majeure. Usually, the system
will not be able to know at the time that the downtime was caused by Force
Majeure. Thus, to handle Force Majeure the system needs to allow us to
specify retrospectively that some period of downtime was caused by Force
Majeure and thus should not be considered as contractual downtime. This, in
itself, is not difficult, but the difficulty comes from the consequences of having
already considered that time as being contractual downtime; for example,

24

restitution payment may already have been made. This is a complex area,
because reassessment of the event history after identification of Force Majeure
might well lead to the conclusion that the client had underpaid, triggering
the outstanding invoices exception clause in the downtime specification and
leading to an unreasonable cascade of changes to the downtime history. Thus
the change of downtime status must be retained in the event history, indicating
why the actions were reasonably taken so as to block unbounded reassessment.

The details of how reassessments might be handled are still being studied. We
believe it is possible to automate some of the handling of such cases. One way
of handling this situation is to allow people to modify the state of the system,
so that they can go back and specify that Force Majeure was in effect at a
certain time, and that a violation caused by this should not be counted as a
violation, and thus the penalty for it no longer applies. BCL allows a system
override facility (see 3.4), which lets any suitably authorized user override any
decisions made by the system, and notes the fact in the trace of events that
has occurred and modifies the values of any value-containers or states held by
the system.

5.4 Temporal Aspects

The contract states that it will “... be for a fixed period of twelve months
from an agreed start date”. We define the start and end dates of a contract
using the concept of a value container — a named piece of data that can be
referenced by other parts of the definition of the contract:

Value: StartDate
1 February 2003, 12:00:00 EST

Value: EndDate
StartDate + 12 Months

In other circumstances, we could specify the end date as a literal time point
or as occurring when a certain condition has been met (such as when all the
goods have been paid for).

BCL does not mandate any particular way of handling of start and end dates,
giving the users flexibility to manage them as necessary. The system could,
for example, send notifications to the parties on these dates. Further, it is
possible to specify that all input events that occur before or after these dates
are ignored, or to send a notification if any such events occur. Standard ways
of handling start and end dates could be included in libraries of standard
definitions.

The contract specifies that the payment must be made within 28 days of the

25

service commencement. Having a deadline for the fulfilment of an obligation
is a very common pattern in contracts. This can be expressed in BCL using
the before operator, which allows us to check that the payment came before
the deadline.

Policy: PaymentChecks
Role: Client
Modality: Obligation
Condition:
PaymentMade before (ServiceCommencement + 28 Days)

This also illustrates the polymorphic nature of events. The two arguments to
the before operator are time points, but placing an event in a context where
a time point is expected yields the time when the event occurs. Events can
be used in arithmetic expressions to yield a time point relative to an earlier
event pattern.

Complex events extend over some period of time, as illustrated by the Contrac-
tualDowntime event, which represents periods of time that does not overlap
with maintenance or emergency downtime, or when the client has an overdue
bill. There is the durationOf method for finding the duration of a complex
event (or its duration so far, if the occurrence it is representing has not com-
pleted yet).

6 Related work

The capabilities of the XML and Web Service standards to support cross-
organizational, real-time and on-demand business collaborations have renewed
interest in studying the semantics of contracts and their architectural impli-
cations for e-commerce systems, as initially discussed in [16].

The early work on electronic representation of contracts by Lee [11] was con-
cerned with developing a logic model for contracting by considering their tem-
poral, deontic and performative aspects. In many respects, our BCL approach
adopts a similar philosophy, but is developed from a different angle — the
enterprise modelling considerations related to open distributed systems. Our
approach, based on the ODP community concept [7] [9] and inspired by deon-
tic formalisms, gives prominence to the problem of defining enterprise policies
as part of organizational structures. Further, we treat contracts as a group
of related policies that regulate inter-organizational business activities and
processes [12] [13]. In this respect we take a similar approach to that of van
den Heuvel and Weigand [22], who developed a business contract specification
language to link specifications of workflow systems.

26

In fact, we consider contracts as the principle coordination mechanism for the
extended enterprise and, considering possible non-compliance situations, we
provide architectural solutions to the problem of monitoring the behaviour
stipulated by a contract as initially proposed in [16]. In addition, this moni-
toring makes use of sophisticated event processing machinery similar to that
of Rapide language [14], which was initially described in [19] and is further
elaborated in this paper.

The WSLA work is concerned with service level agreements for Web Service
standards (essentially addressing end-point aspects of Web Services), but our
approach, while related, is addressing a higher layer in the Web Services stack
— the business level agreements.

We anticipate that current developments in the BPEL and Web Services
Choreography Language (as part of W3C standardization) will provide pow-
erful facilities for expressing cross-organizational business processes and we
plan to investigate options for positioning our solutions as part of these efforts.
We note that current BPEL specification and our BCL work have adopted a
similar event-driven and declarative rule-based design philosophy with full ex-
ploitation of underlying XML and Web Services standards. Both approaches
express behaviour patterns — our specification considers more general ex-
pression of behaviour, while BPEL focuses on the business process style of
expressions.

Finally, some new e-business standardization efforts have started work on
developing standards for expressing the semantics of business contracts and
agreements. The OASIS standards body has recently formed a Technical Com-
mittee to develop an XML e-contract standard, aimed at developing “open
XML standards for the markup of contract documents to enable the efficient
creation, maintenance, management, exchange and publication of contract
documents and contract terms” [21]. UN/CEFACT has also started work on
extending EDIFACT and ebXML standards to support agreements and con-
tracts, within their Unified Business Agreements and Contract project. Our
work can be regarded as a contribution to these standardization efforts.

7 Conclusions and Future work

In this paper we have presented a model for describing coordination in the
extended enterprise. This generic model, based on the ODP community con-
cept is unified because it enables the same style of expressions for internal
enterprise behaviour/structure and for cross-enterprise behaviour/structure,
i.e. the extended enterprise. In the latter case, the community representing
the extended enterprise can itself be considered as an autonomous entity.

27

The coordination model includes basic behaviour concepts such as individual
actions and compositions of such actions using, for example, sequential, paral-
lel or non-deterministic choice composition operators while taking into account
other constraints such as state and temporal relationships. The model also al-
lows the description of modal behaviour constraints such as permissions, pro-
hibitions, obligations and holding of the rights and authorities. An important
part of this model is an unambiguous expression of mechanisms for managing
permissions and obligations within the extended enterprise. The model adopts
a novel approach for passing obligations and permissions between objects as
recently proposed in [13]. It treats the permissions and obligations themselves
as objects that are created and destroyed as they are assigned and discarded.
These token objects are called permits and burdens respectively.

The community modelling elements can be applied to express coordination
activities for the extended enterprise as defined by a business contract. This
paper shows the expression of these coordination activities in terms of con-
straints on the behaviour of parties as specified in business contracts, in par-
ticular the monitoring of deontic constraints such as permissions, obligations
and prohibitions. In future work we plan to explore other roles for contract
languages; this may involve other aspects of business process modelling, and
offers opportunities for closer integration with BPEL4AWS, for example, to
bring in other ways of expressing the coordination activities associated with
business contracts.

The community modelling concepts can also be used to derive concepts of
the extended business contracts languages needed to support e-contracts. This
paper shows how a community model was used as a basis for deriving concepts
of one such language - aimed at supporting contract monitoring activities. In
future work we will investigate the use of the community model for deriving
other contract languages, such as for contract negotiation, contract validation
and contract enforcement.

References

[1] F. Arbab, The IWIM model for coordination of concurrent activities. In
Coordination Languages and Models, LNCS 1061, Springer, 1996

[2] Business Process Execution Language for Web Services, 1.1, May 2003,
http://www-106.ibm.com/developerworks/library /ws-bpel/

[3] J. Cole, J. Derrick, Z. Milosevic and K. Raymond, Author Obliged to Submit
Paper before 4 July: Policies in an Enterprise Specification, Proc. Policy
Workshop, Bristol, UK, January 2001

28

[4] IBM, Web Service Level Agreements (WSLA) Project: SLA Compliance
Monitoring for e-Business on demand, http://www.research.ibm.com/wsla/

[6] ISO/IEC IS 10746-1, Open Distributed Processing Reference Model - Part 1:
Overview, [SO 1995

[6] ISO/IEC IS 10746-2, Open Distributed Processing Reference Model - Part 2:
Foundations, ISO 1995

[7] ISO/IEC IS 10746-3, Open Distributed Processing Reference Model - Part 3:
Architecture, ISO 1995

[8] ISO/IEC IS 10746-4, Open Distributed Processing Reference Model - Part 4:
Architectural Semantics, ISO 1995

[9] ISO/IEC IS 15414, Open Distributed Processing - Enterprise Language, ISO
2002

[10] A. A. Holzbacher, A software environment for concurrent coordinated
programming. In Coordination Languages and Models, LNCS 1061, Springer,
1996

[11] R. Lee, A Logic Model for Electronic Contracting, Decision Support Systems,
4, 27-44

[12] P. F. Linington, Z. Milosevic and K. Raymond, Policies in Communities:
Extending the ODP Enterprise Viewpoint, Proc. 2nd International Workshop
on Enterprise Distributed Object Computing (EDOC’98), San Diego, USA,
November, 1998

[13] P. F. Linington and S. Neal, Using Policies in the Checking of Business to
Business Contracts, Policy Workshop, Como, Italy, June 2003

[14] D. Luckham, The Power of Events, Addison Wesley, 2002

[15] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, Specifying distributed
software architectures. In Proceedings of the 5th FEuropean Software
Engineering Conference, Sept. 1995

[16] Z. Milosevic, Enterprise Aspects of Open Distributed Systems, PhD thesis,
Computer Science Dept., The University of Queensland, October 1995

[17] Z. Milosevic and G. Dromey, On Expressing and Monitoring Behaviour in
Contracts, Proc. 6th International Conference on Enterprise Distributed Object
Computing (EDOC’02), Lausanne, Switzerland, September 2002

[18] S. Neal, A Language for the Dynamic Verification of Design Patterns in
Distributed Computing, PhD Thesis, University of Kent, 2001

[19] S. Neal, J. Cole, P. F. Linington, Z. Milosevic, S. Gibson and S. Kulkarni,
Identifying requirements for Business Contract Language: a Monitoring
Perspective, Proc. 7th International Conference on Enterprise Distributed
Object Computing (EDOC’03), Brisbane, Australia, September 2003

29

[20] S.Neal and P.F.Linington, Tool support for development using patterns, Proc.
5th International Conference on Enterprise Distributed Object Computing
(EDOC’01), Seattle, USA, September 2001

[21] OASIS LegalXML eContracts Technical Committee Charter, http://www.oasis-
open.org/committees/legalxml-econtracts/charter.php

[22] W-Jan van den Heuvel and H. Weigand, Cross-Organisational Workflow
Integration using Contracts, Decision Support Systems, 33(3): p. 247-265

30

