

On Expressing and Monitoring Behaviour in Contracts1

Z. Milosevic1, R.G. Dromey2,
1Distributed Systems Technology Centre, Brisbane, Qld 4072, Australia

zoran@dstc.edu.au
2Software Quality Institute, Griffith University, Nathan, Brisbane, Qld., 4111, Australia

rgd@cit.gu.edu.au

1
���������
	���	
�����
	��
����� ������� ����������	����������������� ����!���"� �#����	$�%��&��'���#()��*��
����	
���'� +!�-,����.����	�/��0()�����'	��1�$�
	32����
��	���	�� �.�
45� �6��	�� �� ��
���87
&!�6�
��9��:�
��/�������; �!<!&-=�4>7��)(�?5����	��
 �<)���'���1@> ��6�'	���; � ���#AB������	���;�C>��+!��	���91���D��E �F(G,)(IH�	��!<)	���9#9��8=�4J������	$��91�����5���
K����) ��6��	$&�L�7)/�� ����/.�0MN,
���.�
 �	�/.���D?PO

Abstract

This paper addresses the problem of transforming natural
language descriptions of contracts into a form that is
suitable for automating various contract management
functions. We investigate two complementary methods
that can be used to achieve this. One method is suitable
for the contract specification phase – to specify expected
behaviour of contracting parties so that they can satisfy
policies stated in a contract. This method also allows for
checking aspects of contract consistency as well as
flexible integration of internal organisational policies
with the contract policies. Another method targets the
contact run-time phase – for monitoring behaviour of
parties to the contract and other aspects of contract
performance. When combined, these two methods
provide a basis to support an increasing level of
automation of many mundane contract activities, while
allowing humans to be involved in ultimate decision
making.

1. Introduction

A contract is an agreement governing part of the
collective behaviour of a set of objects [1]. It specifies
obligations, permissions and prohibitions of the objects
involved, all of which are regarded as constraints on the
objects’ behaviour in relation to other objects involved in
contracts. However, behaviour of parties involved in a
contract is also influenced by other factors, such as
constraints arising from their own objectives, policies of
other domains (e.g. internal policies of enterprises, as
depicted in Fig.1) and some other force majeure factors.
These can lead to actual behaviour that is not always
compliant with contract specifications. To determine this
compliance one needs to put in place mechanisms for

monitoring their behaviour. This can be used to influence
parties to take appropriate actions or to impose other
corrective measures so that their mutually accepted
behaviour as agreed in the contract is ensured.

Figure 1 Internal Policies and Contract Policies:
Service Contract between Purchaser and Supplier

There is currently a large gap between this system-
theoretic model of contracts and the way contracts are
traditionally described - using natural language. This
paper investigates two solutions which can be used to
facilitate mapping of natural language contract
representation into models suitable for contract
automation - as increasingly needed for cost efficient
operations associated with electronic contracts.

One solution makes use of the recently proposed Genetic
Software Engineering (GSE) method [2]. This method
enables transformation of individual policies stated in
natural language in contract clauses into a computer
language representation. This representation is in a form
of component-based behavioural trees – which if executed
by parties to the contract would ensure contract-
compliant behaviour. Further, GSE method allows

Supplier
Purchaser

Service
Contract

Internal
policies

Contract
policies

Contract-governed
behaviour

Internal
behaviour

Note: Internal behaviour
can also be determined
by other contracts

Constraint

Constraint

Constraint

Valued Customer
Policies

Supplier
Purchaser

Service
Contract

Internal
policies

Contract
policies

Contract-governed
behaviour

Internal
behaviour

Note: Internal behaviour
can also be determined
by other contracts

Constraint

Constraint

Constraint

Valued Customer
Policies

composing behaviour trees corresponding to the
individual clauses into an overall tree for the whole
contract. Additional value of the method is to facilitate
detections of inconsistencies in contract. Thus, GSE main
value is at the contract specification phase – it can be
used to derive guidelines to the parties for contract-
compliant behaviour and as a valuable verification tool
for ensuring consistent contract description.

The other solution addresses the contract execution phase
and is motivated by the fact that enterprise behaviour
execution can bring a certain degree of inconsistency in
relation to its specification. In order to deal with such
inconsistencies one can deploy various monitoring
mechanisms. The solution presented in the paper makes
use of a policy language that implements key ideas behind
ODP policy specifications [1]. This language is an
alternative way of describing behaviour. As opposed to
the generic behaviour nature of the GSE concepts, the
policy language gives prominence to obligations,
permissions and prohibitions – to which many contract
clauses can be reduced. In terms of a contract
management architecture, this language is central to the
interpreting of behaviour traces of parties to the contract
and forms the basis for various monitoring aspects of
contracts. The ultimate objective is to facilitate detection
of possible non-compliance to the contract and take
appropriate corrective actions.

Both of these approaches are illustrated with a simple
example from B2B domain (given in Appendix). The
example introduces a Service Contract between a Supplier
and a Purchaser, specifying their mutual policies and it
also shows Valued Customer policies of the Supplier
specifying Supplier’s internal policies, as shown in Fig. 1.

The rest of the paper is structured as follows. Section 2
describes key features of the GSE method and how it can
be used to capture behaviour in contracts. Section 3
outlines the main differences between enterprise and
computational specifications and presents our policy-
based contract monitoring - as part of a Business
Contracts Architecture, previously proposed [7]. Section 4
discusses relation between the behavioural expressions of
GSE and of the policy language. Conclusions and future
work directions are provided in section 5.

2. Genetic Software Engineering method

In order to provide general support for the
implementation, and monitoring of contracts across
enterprises it is necessary to have a way of capturing, first
in a formal specification, and then in software, the
policies, actions, events, decisions, obligations, behaviors

and constraints expressed in original natural language
representations of contracts.

The legal nature of contracts and an increasing need for
automated management of contracting activities makes it
a priority that there is a direct and clearly traceable
relationship between what is expressed in the natural
language representation and in the formal specification.
Behavior trees [2] have been successfully used in software
engineering to capture functional requirements behavior
and are an attractive option for this purpose because they
may be used to translate, on a sentence-by-sentence basis,
the behavior expressed in a contract.

2.1 Requirements Translation

Translation to behaviour trees involves identifying the
components (including actors and users), the states they
realise (including attribute assignments), the events and
decisions/constraints that they are associated with, the
data components exchange, and the causal, logical and
temporal dependencies associated with component
interactions. The translation process can be quickly and
easily mastered because of the use of a simple
Component-State defining form and the small number of
operations that can be associated with components, states
and attributes. The tagged component-state notation
captures the essential behaviour. For example, the third
box in Fig.2 to clause 4.2 in the contract and it says
“component ‘SUPPLIER’ has realised the state that ‘the
Goods are Available’. At the same time the component
‘Goods’ has realised the state ‘Available’.

The principal conventions of the notation for component
states are the graphical forms for: [State], ??Event??,
?Decision?, [Component[State]], [Attribute := expression
| State]. Exactly what can be an event, a decision, a state,
etc are built on the formal foundations of quantifier-free
formulae (qff). To assist with traceability to original
requirements the following conventions are followed.
Tags (e.g. 4.1 and 4.2, see below) are used to refer to the
original clause in the document that is being translated.
Record/data definitions and other constraints or comments
are signaled by a “/” and are included in round-cornered
rectangles (see example translation below). System states,
which are used to model high-level behavior,
preconditions/postconditions and possibly other behavior
that is not associated with particular components, are
represented by rectangles with a double line === border.

In practice when translating contract requirements into
behavior trees we often find that there is a lot of behavior
that is either missing or is only implied by the requirement

 (or clause). We mark implied behavior with a (+) in the

tag (and/or the colour yellow if colour can be shown).
Behavior that is missing is marked with a (-) in the tag
(and/or the colour red). Explicit behavior in the original
requirement that is translated and captured in the behavior
tree has no marking (+/-) (and the colour green is used),
Fig. 2. These conventions maximize traceability to
original requirements. The Green-Yellow-Red traffic light
metaphor is intended to indicate to readers of the
specification the need for caution (yellow) and danger
(red) and to draw attention, to deficiencies in the original
requirements. This is particularly useful when discussing
requirements and designs with users or clients.

�

	:#/2.'�
06')4#6+10�

An example of requirements translation into a behavior
tree is shown in Fig. 2 for sections 4.1 and 4.2 of the
Contract for Services (see Appendix)

In translating the clauses 4.1. and 4.2 the obvious
components that exhibit behaviour are the SUPPLIER
and the PURCHASER. Other components are the
GOODS, the ORDER and the SERVICE. We have also
added the SYSTEM as a component to absorb the
behaviour needed to deal with late/on-time delivery of
goods. In specifying the behaviour we have allowed for
the possibility that the service will not be provided in the
time specified. An example of an event is “order
received”, (an event is a behaviour that only may occur
and if it does occur we cannot predict exactly when it will
occur – it holds up the flow of control to its child nodes in
the behaviour tree until it occurs), a decision is “are goods
received within one day”, and a state realisation is
“Order[Received]”. The latter is also an event because of
its temporal dependence. Note also, “Received” is a state
realised by the component “Order”. Usually in doing
requirements translations we do a literal translation first,
followed by any necessary augmentations to make the
behaviour usable in an automated system. Here, because
of space limitations, we have not shown the literal
translation step. For this behaviour tree the number of
(+’s) indicate that there was a significant amount of
implied behaviour in these two clauses. The behaviour in
4.1 and 4.2 could have been expressed more succinctly by
avoiding specification of details about recording dates
(which may be regarded as implementation level detail)
and simply providing a choice of “?Late?” or
“?NOT:Late?” decisions to determine whether or not
there has been a violation of the contract’s service
provision. There is ambiguity in the original requirement
about exactly what is meant by “make them (the Goods)
available”. We have interpreted this as “requiring that the
goods are received by the purchaser”.

The Behavior Tree Notation is a graphic notation for
representing a wide range of behavior that is likely to be
found in areas as diverse as advanced technological
applications, legal documents, standards and procedures.
Important advantages of behavior trees are their
expressive power coupled with notational simplicity, their
ability to accommodate complexity and detail, their ease
of use, their composability, their ability to expose
behavioral defects and their derivable properties [2]. They
allow complex behavior to be expressed both in detail and
at an abstract level within the one framework (see [2]).
And, importantly, they allow behaviour of individual
components to be easily partitioned and separated out. In
genetic software engineering (GSE) individual functional
requirements (or sentences) are first translated into
composable behavior trees. Each requirements behavior
tree (RBT) is then integrated one at a time to create a
design behavior tree (DBT). This amounts to building a

4.2 SUPPLIER
?? Order[Received] ??

4.2
+

SYSTEM
 [Order_Date :=Date()]

4.2
SUPPLIER

[Goods[Available]/]

4.1/Goods[Available]/
Quality-of_Service_Agreement/

http ://supplier/qos1/htm

4.2
+

SUPPLIER
??Goods[Dispatched] ??

4.2
+

SYSTEM
 [Recd_Date :=Date()]

4.2
+

SYSTEM
 ? (Recd_Date - Order_Date) ≤ 1 ?

4.2
+

SYSTEM
 [Service[Conformant]]

4.2
+

SYSTEM
 [Service[In_Violation]]

4.2
+

SYSTEM
 ? (Recd_Date - Order_Date) > 1 ?

Example
4.1 The (Supplier) shall ensure the (Goods) are available to the

 (Purchaser) under the Quality of Service Agreement High
(http://supplier/qos1.htm).

4.2 The (Supplier) shall on receipt of a purchase order for
 (Goods) the (Supplier) shall make them available with in 1 days.

4.2
+

PURCHASER
??Goods[Received] ??

Figure 2 Behaviour Tree for Clause 4.2

system out of its requirements, rather than simply building
a system that will satisfy its functional requirements. This
maximizes traceability, which is vitally important when
dealing with contracts. Because a design is composed out
of its requirements, one at a time, this greatly simplifies
the design process (compared with attempting to construct
a system that merely satisfies a large number of
requirements) and makes adding, modifying or deleting a
requirement (that is, change or evolution) relatively
straightforward.

Figure 3: Behaviour Tree for part of Clause 5.1

 The advantages and the process for using behavior trees
that applies in genetic software engineering can be
directly carried over to the contract specification and
implementation problem domain because the behavior
that needs to be captured for contract automation is
essentially the same as the behavior expressed in
functional requirements. Using the behavior-tree notation
we can translate each individual contract requirement, use
case, or constraint, expressed informally in natural
language, into its corresponding formal graphic behavior-

tree representation. Behavior trees capture/express
behaviors in terms of state realizations, state transitions
and component interactions. There are three important
advantages that flow from such translations: (1) there
tends to be little variability among literal translations
made by different people of the same requirement (2) The
component-state form of behavior-trees is compatible
with object-oriented and component-based designs (3)
The translation process is very effective for revealing
defects and/or missing behavior in the original natural
language requirements.

Due to the limited space available we do not provide full
details of the GSE method – rather we concentrate on
illustrating the application of the method to contracts.
Elsewhere (see http://www.sqi.gu.edu.au/gse/papers in an
SQI Technical Report titled Genetic Software
Engineering) we have used Dijkstra’s weakest
precondition conventions to formally define the semantics
of the textual equivalents of the core elements of the
Behavior Tree Notation. The notation is particularly well
suited to having its semantics formally defined using
Modal Logic.

2.2 Requirements Integration

The design process proceeds as follows. First each
individual requirement is translated to its corresponding
requirements behavior tree (RBT). We can then
systematically and incrementally construct a design
behaviour tree (DBT) that will satisfy all its requirements
by integrating the requirements’ behavior trees (RBT)
one at a time. Integrating two behavior trees turns out to
be a relatively simple process. It most often involves
locating where the component/state root node of one
behavior tree occurs in the other tree and grafting the two
trees together at that point. This process generalises when
we need to integrate N behaviour trees. We only ever
attempt to integrate two behaviour trees at one time.

�

	:#/2.'�
06')4#6+10�

To illustrate the process of requirements integration we
will take another of the requirements in the Contract for
Services (example in the Appendix) and integrate it with
the translated requirement for section 4.1 and 4.2 given
above. The requirement we choose to integrate is that for
section 5.1. Fig. 3 depicts a partial requirements
translation for section 5.1. The root of 5.1’s behavior
tree, after direct translation, is the component-state
SUPPLIER[INVOICE[Prepared]]. To try to integrate it
we can look for this node in the 4.1/4.2 Behavior Tree – it
is not there. When this happens, as is often the case, it
usually means there is a missing precondition for the

5.1
+

SUPPLIER
[INVOICE/[Prepared]]

5.1
+

SYSTEM
 [Invoice_Date :=Date()]

5.1
_

SUPPLIER
?? INVOICE[Sent] ??

INVOICE/
PURCHASER

!! Pay | Within_7_day s !!
!! P ay | In_Full !!

5.1
PURCHASER

??INVOICE/[Received] ??

Example
5.1 The payment terms shall be in full upon receipt of invoice.
 Interest shall be charged at 5% on accounts not paid
 within 7 days of the invoice date. The prices shall be as
 stated in the sales order unless otherwise agreed in
 writing by the supplier

5.1
+

PURCHASER
[Payment[Sent]]

5.1
+

SUPPLIER
??Payment[Received] ??

PRE SUPPLIER
?? Goods[Dispatched]??

behavior tree. To remedy this problem and integrate this
invoicing/payment requirement we need to ask the
question, “what precondition is necessary in order to send
the purchaser an invoice?” Domain knowledge and/or
good business practice would suggest that you do not send
the purchaser an invoice until the goods have been
dispatched. We therefore add this precondition as the new
root of the 5.1 behavior tree. (see Fig. 3). We now have
the information needed to go ahead and integrate the two
behavior trees using the root node matching behavior tree
integration strategy.

�

Figure 4: Integration of behaviour trees

Figure 4 shows the result of integrating the behavior trees
for two requirements 4.1/4.2 and 5.1 by grafting 5.1 onto
4.1/4.2 at the common component node
SUPPLIER??Goods[Dispatched]??. The resulting
integrated behavior-tree (or DBT) satisfies both 4.1/4.2
and 5.1. The contributions of the individual requirements
4.1, 4.2 and 5.1 are traced in the integrated or design
behavior-tree by the their respective numbers used to tag
each of the component/state nodes in the tree. This level
of direct traceability is important when we are concerned
with embedding contract requirements in a design.

Using this behavior-tree grafting process, a complete
design is constructed incrementally by integrating one
requirement at a time into the evolving DBT. This is the
ideal for design construction that is realizable when all
requirements are consistent, and composable. When it is
not possible to integrate an RBT into the DBT it points to
an integration problem with the specified requirements
that needs to be resolved. Being able to construct a design
incrementally, significantly reduces the complexity of this
critical phase of the design process. And importantly, in
the contract-automation domain, it provides direct
traceability to the original clauses in the contract.

Requirements translation and then requirements
integration works as a design strategy because individual
functional requirements represent “fragments of behavior”
whereas a design represents “integrated behavior”. What
is more, these fragments are genetic in nature – they (as a
complete set) have the interesting property that they
contain enough information within the set to support their
integration to create a DBT. In some respects the GSE
process is like solving a jigsaw puzzle, where the solution
is built out of the pieces. With both GSE and solving a
jigsaw puzzle, the key thing is the position where each
piece is placed. Behavior trees make it possible to identify
that position.

To take the GSE process through to the implementation
stage we must transform the design behavior tree into its
corresponding software architecture (or component
integration network, CIN – that shows all the
dependencies among all the components needed to
implement the behaviour in all the requirements of the
system) and project from the DBT the component
behavior trees (CBTs) for each of the components
mentioned in the original functional requirements (in this
case we would have CBTs for the SUPPLIER and the
PURCHASER). Due to space limitation these steps are
not described here but examples are given in [2].

2.3 Detection of Specification Defects

Translation of Contract requirements into behaviour trees
and subsequent integration of those behaviour trees
provides a powerful means for detecting defects in a
contract. As an example, what we find in translating the
payment clauses, 5.1 and 5.2 is that, while they set some
constraints for the payment process they leave out
important steps and they make essentially no provision for
what should happen when the constraints and other
important implementation steps are not met. The
specification strategy for dealing with this particular
contract style therefore needs to involves the following.

4.2 SUPPLIER
?? Order[Received] ??

4.2
+

SYSTEM
 [Order_Date :=Date()]

4.2 SUPPLIER
[Goods[Available]/]

4.1/Goods[Available]/
Quality-of_Service_Agreement/

http://supplier/qos1/htm

4.2
+

SUPPLIER
??Goods[Dispatched] ??

4.2
+

SYSTEM
 [Recd_Date :=Date()]

4.2
+

SYSTEM
 ? (Recd_Date - Order_Date) ≤ 1 ?

4.2
+

SYSTEM
 [Service[Conformant]]

4.2
+

SYSTEM
 [Service[In_Violation]]

4.2
+

SYSTEM
 ? (Recd_Date - Order_Date) > 1 ?

4.2
+

PURCHASER
[Goods[Received]]

5.1
+

SUPPLIER
[INVOICE/[Prepared]]

5.1
+

SYSTEM
 [Invoice_Date :=Date()]

5.1
_

SUPPLIER
?? INVOICE[Sent] ??

INVOICE/
PURCHASER

!! Pay | Within_7_day s !!
!! Pay | In_Full !!

5.1 PURCHASER
??INVOICE/[Received] ??

5.1
+

PURCHASER
[Payment[Sent]]

Point of Integration

CONTRACT FOR SERVICES - Integration of 4.1+4.2+5.1

• Introduction of new behavior implied, but not
explicitly required by the payment clauses, that is
necessary and sufficient to implement the payment
process both from the purchaser and supplier’s
perspectives.

• Integration of the constraints specified in 5.1 and 5.2
into the overall payment process.

• Augmentation of the payment processing process
with additional behavior to properly accommodate
what should happen when the constraints and
possibly other implementation conditions are not
satisfied.

What is important, and what the behavior tree notation
allows, is the clear delineation of what was explicitly
expressed in the contract. It is also possible to separately
identify what is implied by the contract but which is not
explicitly stated. Finally, we can identify behavioral
incompleteness problems where an alternative situation is
possible, but the contract has failed to specify what should
happen. We do this most often by examining decision
nodes or event nodes or leaf nodes in the integrated
design behaviour tree for missing alternatives or
additional behaviour. For example, clause 4.2 talks about
goods being available within one day. Clearly, we need to
accommodate the case where it is not available within one
day. Other particular examples of defects found when
clauses 5.1 and 5.2 are fully translated into behaviour
trees are:

• No provision has been made for the supplier to
send an invoice to the purchaser.

• No provision has been made for the purchaser to
check that the invoice is correct.

• There are several other instances where it is not
clear what should happen next when a certain
situation arises. For example, if the invoice sent
to the purchaser is incorrect, according to
Purchaser, then it is unclear, from what has been
provided in the contract, what should happen
next.

• Another example is that it is unclear how the
Supplier should proceed, when the payment is
late or payment is not made in full.

• A mechanism is also needed to charge interest
and receive the payment.

2.4 Incorporating Policy External to a Contract

It is important within the contract management framework
to be able to properly accommodate company-wide policy
that sits above or outside individual contracts. There are
three strategies that can play a role in implementing
organizational internal policy in contract execution: (1)

when a policy related event arises control can be passed to
a human operator who has the responsibility to recognize
what action and input to the system is needed to
implement company policy, or (2) we can formalize
required policy as behavior using either the GSE behavior
trees or the Policy Language method (see next section)
and let the contract system take care of it automatically, or
(3) we can use a mix of the first two strategies that will
give us the best mix in terms of flexibility, productivity
and outcome, and (4) additionally, we can choose to build
up our store of formalized Policy behavior on a needs
basis. This way, over time, our library of formalized and
reusable Policy Behavior grows in increments without a
large up-front investment. Total formalization of company
policy is likely, in most cases, to be either impossible, or
not worth the investment of effort needed.

When the behavior tree representation is used for
incorporating external Policy we can proceed as follows.
First we can build up a store of policy requirements that
have been encoded as behavior trees. Second we can
integrate and adapt the appropriate sub-set of policy
behavior fragments into each contract as required. Our
requirements for the application of Policy are that they
need to be easily deployable to many different contracts.
Furthermore only parts of the behavior in any given policy
may be relevant to, and applicable for, a given contract. It
is therefore important that we have a flexible and efficient
way of adapting or tailoring policy behavior to any
particular contract. One way to satisfy these requirements
using the GSE method is to functionally integrate the
behavior tree fragments that define that part of company
policy that has been formalized. This gives us an
integrated design behavior tree for available formalized
policy. We then extract, by behavior tailoring, the Policy
behavior that is needed for a given contract. Finally, we
manufacture (using a largely automated process) a
contract-specific policy component that we in turn
integrate into the component-based system configuration
needed to implement the particular contract. This may
require application of a Behavior Alignment strategy
where we work out correspondences between generic
components and states and the particular components and
states that need to be instantiated for the particular policy.

Consider the following policy statements in English:

1. Internal Supplier Policy – Valued Customers

(a) Give 10% discount to valued customers
(b) Valued customers are those with total purchases >
$1,000,000
(c) Lose valued customer status after three consecutive
late payments.

 The behavior required to implement this external Valued-
Customer Policy (VCP) needs to be implemented by two
behavior fragments (Fig. 5), one that gives the discount
and makes an update on any purchaser that meets the
criteria for valued-customer status -VCP (a),(b) and a
second that keeps track of consecutive late payments and
removes valued-customer status from a purchaser when
they make three late payments – VCP (c). These two
reusable Policy Implementation Behaviors need to be
integrated into the Contract behavior tree at two separate
integration points as indicated in Fig. 5. A Behavior Tree
maintenance tool can support this external policy
application integration into a contract can either be
automated or conducted under user control.

In expressing this required behavior we have chosen to
express it close to the implementation level. We could
equally well have chosen to express it at a much higher
level, closer to the natural language Policy statements by
incorporating essentially direct translations for states like
“?[[Consecutive] Late]Payment = 3? and ?Total >
1000000?. This would have produced a much briefer but

less informative specification. This sort of choice is
always open to the specifier when using behavior trees.
The Valued-Customer Policy behaviour tree introduces
another small piece of notation associated with
component-states. If we want to talk about the high-level
behavior “supplier processing payment” we could use
SUPPLIER[Payment[Processing]]. However to improve
readability we can equivalently express this as
SUPPLIER[[Processing] Payment]. A similar thing has
been done with consecutive, late, payments, above.

3. Policy based contract monitoring

The GSE method enables expression of behaviour of
parties to the contract in a way that would satisfy their
obligations and other policies as stated in a contract.
However, the nature of systems in which people and
organisations are in decision loop, is such that some
behaviour may not be executed as agreed by the contract.
Thus, although the mapping of a contract into the
corresponding integrated design tree provides a basis for
prescribing parties’ behaviour as far as this contract is

VCP VC-Policy / PURCHASER
[NOT : Valued_Customer]

5
SUPPLIER=

[[Processing] Payment]

5.1 SUPPLIER =
?? < Invoice> ??

VCP
(a)

VC-Policy / PURCHASER
[[Discount /10%]Payment]

VCP
(b)

VC-Policy/PURCHASER
[Total:=(Total + Payment)]

VCP
(b)

VC-Policy/PURCHASER
? Total > 1000000 ?

VCP
(b)

 VC-Policy / PURCHASER
[[Valued] Customer]

VCP
(b)

VC-Policy/PURCHASER
? Total <= 1000000 ?

5.1 SUPPLIER =
?? Invoice[Sent] ??

External Policy
Integration Point

5.1 SUPPLIER
? Pay_Date > (Date:3+7) ?

External Policy
Integration Point

VCP
(c)

VC-Policy /PURCHASER
[Payment[Late]++]

VCP
(c)

VC-Policy / PURCHASER
? Payment[Late] = 3 ?

VCP
(c)

VC-Policy / PURCHASER
[Payment[Late] := 0]

VCP
(c)

VC-Policy / PURCHASER
 [Total := 0]

VCP
(c)

VC-Policy / PURCHASER
?Payment[Previous]=Late?

VCP
(c)

VC-Policy / PURCHASER
[Payment := Late]

VCP
(c)

VC-Policy /PURCHASER
? ELSE ?

VCP
(c)

VC-Policy / PURCHASER
[Payment[Late] := 1]

VCP
(c)

VC-Policy / PURCHASER
? ELSE ?

5.1 SUPPLIER=
[Interest_Penalty]

5.1 SUPPLIER=
[Interest_Penalty]

5.1
SUPPLIER=

[Interest_Penalty]
Integration
Point

Integration
Point

Integration
Point

Integration
Point

Integration
Point

VCP
(c)

VC-Policy / PURCHASER
[Payment[Previous]:=Late]

"= " indicates there is more than one point
 where the behavior that follows can apply.
 It only needs to be integrated at one of these
 points to avoid redundancy in the specification
 of behavior.

Figure 5: Integration with external policies (e.g. company’s internal policies)

concerned, this may not be sufficient to guarantee that
such behaviour will eventuate. To deal with such
situations a monitoring mechanism should be put in place
to compare desired and actual behaviour (Fig. 6).

This section begins with a brief description of differences
between enterprise and computational specifications. It
then introduces key monitoring aspects of our contract
management architecture, in particular our policy
language.

3.1 Enterprise vs computational specification
Enterprise specifications are needed for describing
policies and behaviours of enterprises, both in terms of
their internal policies and policies arising from contracts
with other parties. Following the spirit of ODP Reference
Model, an enterprise specification provides a way of
describing business problem and a basis for subsequent
specifications addressing information and computational
aspects of the software, as well as key technology aspects.

As stated in [3], one way in which an enterprise
specification differs significantly from a computational
specification is in the probable degree of inconsistency
that must be expected to be present. While a
computational design that is inconsistent can be rejected
by a design tool until corrected, an enterprise
specification may often place conflicting constraints or
requirements which are defeated by changes in real world.
Take for example the real life situation regarding driving
rules. A rule stating that one is prohibited to drive through
a red light or drive over the speed limit can be defeated in
the case where there is a seriously ill person. Thus, when
considering enterprise specification, the set of constraints
needs to be seen more as a set of objectives to be
managed than a rigid structure that deadlocks if any
element is violated [3]. A more detailed analysis of the
differences between enterprise and computational
specification can be found in [4]. We note that every
enterprise specification can be reduced to some
computational specification – but using computational
specification for describing enterprise systems can be
often impractical. This is because it can lead to
unmanageable number of possible options that reflect
decisions of actors in the enterprise setting – and often
even not being able to guarantee that all possible cases
have been taken into account.

A key area of enterprise specification of relevance for
contracts is specification of policies, in particular those
policies that represent constraints on behaviour. These are
policies that express obligations, permissions and
prohibitions of parties, as specified by contract. We note
that some other policy specifications, such as

configuration information (e.g. structure of contracts and
dependencies between their clauses) are relatively
straightforward to specify and are not discussed here.

3.2 Language for describing enterprise policies

The policy language we use as part of contract monitoring
is based on the ODP standards, our policy framework
developed in [4] and on the work of Steen and Derrick,
[5]. This policy language is developed to closely follow
English language representation for typical behavioural
policy statements that are also used in contracts. Most of
these policy statements express constraints in terms of
obligations, permissions or prohibitions. We refer to such
statements as deontic statements as inspired by a special
branch of modal logic, viz deontic logic, that is
concerned with the problem of reasoning about the
notions of obligations, permissions, prohibitions, authority
and so on. Accordingly, in this paper we will refer to our
policy language as deontic policy language (DPL).

In addition to its style being influenced by natural
language used in contracts, the DPL needs to be suitable
for interpreting behaviour execution so that it is possible
to perform run-time evaluation of policy compliance.
Essentially, the DPL is a specialised behavioural language
which gives prominence to the concepts of Role, Modality
(obligations, permissions or prohibitions), Action,
Temporal Conditions and other Conditions that need to be
fulfilled for a behaviour to satisfy policy. In its simple
form the DPL grammar is as follows:

Policy <PolicyIdentifier>
A <RoleIdentifier> is
 (permitted|obliged|forbidden)
 to(do<Action>|satisfy<Condition>)
 [,temporal <TemporalCondition>]
 [, if <Condition>]
 [, where <Condition>]

The if clause above is used to express conditional policy
statement. The where clause is used to specify parameters
of Action and temporal clause expresses various temporal
constraints (duration, relative or absolute time).

Thus, DPL is intended to describe constraints on
behaviour of contracting parties and its emphasis is on
describing what the parties are permitted, prohibited or
obligated to do, under various temporal and other
conditions.

We observe that typical policy statements expressed in
natural language can be often impersonal. i.e. the
responsible actor is not mentioned explicitly. This is
because the actor may be implied by the outer context –

being it the clause where this policy is defined or as stated
in some other clause of the contract. For example all
policy statements from section 2.4 (given in the Text Box)
are of impersonal nature. We note that this common style
of expressing policies in contracts, along with the usage of
implied and context-dependent expressions can often be a
source of ambiguity in contracts.

In addition, natural language contracts often contain
expressions of certain conditions relating to a state of
some entity. Since the DPL is essentially a behavioural
language where the actions of actors are of primary
interest, the state information is dealt with through
checking other conditions that can be included as part of
if, where, satisfy and temporal conditions in the DPL. For
example, policy b) from section 2.4 is a definitional
policy related to state about items purchased. This state
management is dealt with in other parts of our contract
management system (referred to as internal structures in
Fug. 6)..

The process of run-time policy interpretation rests with
the interpretation of policy statements in the above form
but the interpretation is also dependent on other
mechanisms. In addition to the mechanisms used to
maintain and interpret state information as mentioned
above, this may include mechanisms to process events of
various kinds and mechanisms for accessing data from the
local or remote enterprise systems - as part of an overall

contract management system.

We note that there may be other policies stated in
contracts which are not directly of deontic nature, e.g.
various configuration constraints and these policies need
to be also checked. These are beyond the scope of DPL.

We illustrate the use of DPL with the examples of Valued
Customer internal policy statements and Service Contract
policy statements (as included in policy fragment in the
the TextBox in section 2.4).

Consider first Policy (a). Note that in its English
description it is implied that a Supplier has an obligation
to give 10% discount to a valued customer. It is also
implied that this should be the case whenever she
purchases an item. It is also assumed that a valued
customer is defined elsewhere (indeed this is what Policy
(b) states). Evidently, Policy (a) can be regarded as a
shorthand expression of a more complete statement. It is
only that such complete statements can be tested in run-
rime and these complete statements are supported by
DPL. Thus, according to the DPL:

Policy (a): A Supplier is obliged to give_discount
where (customer = Valued Customer)

When considering Policy (b) one concludes that this
policy does not directly specify a constraint on behaviour

Contract Specification Phase Run time contract monitoring

2 DOOR
[Closed]

2 USER
??Door-Closed??

1,2 DOOR
[Open]

1 LIGHT
[On]

2 DOOR
[Closed]

2 USER
??Door-Closed??

2 LIGHT
[Off]

1,2 DOOR
[Open]

1 USER
??Door-Opened??

1 LIGHT
[On]

GSE Mapping

GSE Verifications

Service
Contract

Supplier

Purchaser

Notifications

Enforcement

GSE – recommendations +
consistency checking

DPL – Monitoring + Enforcement

Legend

Supplier is obliged to….

Purchaser is permitted to….

DPL statements for Purchaser

DPL statements for Supplier

Notary
Agreed

contractsPurchaser
behaviour

prescriptions

Supplier
behaviour

prescription

Observations

Monitor
policy

interpretations

Internal
structures

Contract-governed
transactions

Supporting policy
Information (states, events …)

Contract Specification Phase Run time contract monitoringRun time contract monitoring

2 DOOR
[Closed]

2 USER
??Door-Closed??

1,2 DOOR
[Open]

1 LIGHT
[On]

2 DOOR
[Closed]

2 USER
??Door-Closed??

2 LIGHT
[Off]

1,2 DOOR
[Open]

1 USER
??Door-Opened??

1 LIGHT
[On]

GSE Mapping

2 DOOR
[Closed]

2 USER
??Door-Closed??

1,2 DOOR
[Open]

1 LIGHT
[On]

2 DOOR
[Closed]

2 USER
??Door-Closed??

1,2 DOOR
[Open]

1 LIGHT
[On]

2 DOOR
[Closed]

2 USER
??Door-Closed??

2 LIGHT
[Off]

1,2 DOOR
[Open]

1 USER
??Door-Opened??

1 LIGHT
[On]

2 DOOR
[Closed]

2 USER
??Door-Closed??

2 LIGHT
[Off]

1,2 DOOR
[Open]

1 USER
??Door-Opened??

1 LIGHT
[On]

GSE Mapping

GSE VerificationsGSE Verifications

Service
Contract

Supplier

Purchaser

Service
Contract

SupplierSupplier

PurchaserPurchaser

NotificationsNotifications

EnforcementEnforcement

GSE – recommendations +
consistency checking

DPL – Monitoring + Enforcement

Legend
GSE – recommendations +

consistency checking
DPL – Monitoring + Enforcement

Legend

Supplier is obliged to….

Purchaser is permitted to….

DPL statements for Purchaser

DPL statements for Supplier

Supplier is obliged to….Supplier is obliged to….

Purchaser is permitted to….Purchaser is permitted to….

DPL statements for Purchaser

DPL statements for Supplier

Notary
Agreed

contracts

Notary
Agreed

contracts

Notary
Agreed

contractsPurchaser
behaviour

prescriptions

Supplier
behaviour

prescription

Purchaser
behaviour

prescriptions

Supplier
behaviour

prescription

Observations

Monitor
policy

interpretationsObservations

Monitor
policy

interpretations

Monitor
policy

interpretations

Internal
structures

Internal
structures

Internal
structures

Contract-governed
transactions

Contract-governed
transactions

Supporting policy
Information (states, events …)

Supporting policy
Information (states, events …)

Figure 6: Positioning of GSE and DPL methods

in its deontic sense (for which DPL is designed). In fact,
this policy is of a definitional nature using information
about state (> $1, 000, 000) which is managed elsewhere
in the contract management system.

In relation to Policy (c) it is obvious that someone needs
to change the status of a valued customer if the new
condition is met (i.e. NumberOfLatePayments > 3). It is
natural to assume that this is done by the Supplier role (in
case a Supplier is an organisation, this can be a role which
is authorised to act on behalf of the Supplier). In this case,
the policy can be interpreted as an obligation that the
Supplier should do this in any case. However, considering
that there may be other factors that can influence the
decision of the Supplier (e.g. the Valued Customer
Purchaser changed their IT payment infrastructure, which
caused the delay in the third payment) the ultimate
decision is under the discretion of the Supplier. Therefore,
the policy can be stated in its weaker form, in terms of a
permission. Thus, the corresponding DPL expression is:

Policy c: A Supplier is permitted to do remove_customer
(Customer) where (Customer.NumberLatePayments > 3)

Similarly, the policies in two Payment clauses of Clause
group 5 from contract example are stated in DPL as:

Policy 5.1a A Purchaser is obliged to do
Purchase_Payment temporal CurrentDate after
Recipt_of_Invoice

Policy 5.1.b A Supplier is permitted to do
Charge_interest where (Date > Invoice_Date + 7)

Observe that the clause 5.1 includes several policies, and
we show two of them, i.e. 5.1a and policy 5.1b. Policy 5.2
can be expressed as:

Policy 5.2 A Purchaser is obliged to do
Send_Payment_electronically satisfy (PayPal rules)

These examples show how English language format of the
Service Contract payment policies can be expressed in the
DPL form.

Our experience with examining many forms of
behavioural-oriented policies so far (i.e. in the deontic
sense) suggests that most of such policy statements in
natural language can be reduced to the form above as
supported by the DPL grammar. The grammar is being
extended to better support temporal constraint expressions
(making use of some of the results from [6]) and also
relationships between different policies. The latter will
also enable expressing dependences between policy

constraints of contracts and other related fragments of
behavior

3.3 Key roles supporting monitoring

The DPL statements for specific policies are interpreted
by a Contract Monitor (CM) component. The role of CM
is to observe actual behaviour and compare it to the
agreed behaviour in contract. The signed contract
instances are stored in a repository referred to as Notary
(see Fig. 6). There are several other components in the
BCA as introduced in [8], augmented with necessary
infrastructure components that support description of
other policy-related information such as state and event
related contract data.

4. Discussion

This section provides several discussion points assessing
the use of GSE method in the contract domain and how
the two methodologies presented in this paper can be used
synergistically.

The behavior tree notation and supporting GSE Method
appear to have a number of characteristics and capabilities
that make them suitable for application in contracting
applications. There are several areas where GSE can make
its most useful contributions:
• Behavior trees appear to have enough expressive
power to accommodate the wide range of behaviors and
constraints that are needed to represent contract semantics
for automated management applications.
• GSE is an effective tool for finding
incompleteness and inconsistencies in a contract. It is
essential that these problems are uncovered and resolved
before the contract is deployed. The payment component,
and the rest of the Contract for Services example,
considered above, provide evidence for this capability.
• Behavior tree descriptions of contracts employ a
simple intuitive notation and have direct traceability to the
original contract. This makes them easy to read and
verify by end-users, and legal people, without a large
investment of time to master the notation.
• The behavior tree notation also has the
advantage that it may be easily simulated and/or mapped
to object-oriented or component based implementations or
to use in distributed component frameworks.
• Similar to large software systems, some
enterprise contracts can have a significant amount of
complexity and detail. GSE is easily able to accommodate
the needs in this area.
• Perhaps more than any other notation for
expressing behavior the GSE method is much more easily
able to accommodate and trace changes. In some contract

application areas it is extremely important to have this
capability and flexibility.

It is essential to employ powerful tool support when using
behavior trees and GSE in order to maximize the benefits
from using the method. Currently there is some tool
support for software engineering applications. We are
presently assessing how this technology can be leveraged,
adapted and integrated into the existing contract
management environment that supports the
implementation of the Policy language and overall
contract monitoring.

Fig. 6 depicts the application of the GSE and DPL
approaches at various stages in contract management. The
left part of the diagram shows the use of GSE method to
specify expected behaviour of parties to the contract. This
behaviour representation can be used to generate various
kind of notifications to the parties to execute their
respective actions that are pending, e.g. a reminder to a
role in the Supplier organization to send an Invoice to the
Purchaser or a notification that a contract is approaching
an end-date and needs renewal. In other words, the
behaviour trees produced by the GSE method can be
regarded as guidelines (or prescriptions) for the parties to
execute actions as specified by the contract. The diagram
also shows our current approach to support contract
monitoring based on the use of DPL. Similarly to the GSE
method, we derive policy statements for the monitoring
based on the natural language description of contact.
Currently, this is done manually, although we are planning
to investigate various options for an automated tool to
support this editing. Policy descriptions are stored in the
Notary component. In addition to the policy descriptions,
there are many other configuration-like information which
are needed to describe particular contractual situations in
terms of contract-significant events, states and
notifications. These are then stored in various internal
structures within BCA. During service execution, the
BCA Monitor is observing behaviour of parties to the
contract and other contract-related information from the
enterprise systems environment and compare these actual
behaviours with those that are specified in the contract
and stored in the Notary. If a non-compliance is detected,
the Monitor will signal this information either to the
parties to the contract or to an enforcement system for
some corrective actions. This can be a complex system
that supports multiple escalation levels, ultimately
involving a human decision maker, as discussed in [9].

5. Conclusions and Future Work

This paper has presented two methods that can be used for
specifying behaviour of contracting parties and supporting

monitoring of run-time aspects of contracts, including
obligation monitoring of parties to the contract. The
power of Genetic Software Engineering methodology -
initially developed for the software specification domain -
can be exploited during the contract specification stage.
The key value of Deontic Policy Language approach is in
supporting the run-time phase of contract execution, in
particular contract monitoring. When used in
combination, these methodologies provide the basis for
automating key contract management activities.

Our next step will be to further integrate these two
separately developed methods. The architectural
underpinning for experimenting with the methods is
mostly likely to be a generic framework of Business
Contracts Architecture initially presented in [7], [8].

References

[1] Open Distributed Processing: Reference Model - Part2:
Foundations, Int. Standard 10746-2, ITU-T, Rec. X.902

[2] R.G.Dromey, Genetic Software Engineering - simplifying
design using Requirements Integration, IEEE Working
Conference on Complex and Dynamic Systems Architecture,
Brisbane, Dec 2001.

[3] P.F. Linington, Options for Expressing ODP Enterprise
Comminities and Their policies by Using UML, Proc. of the 3rd
International Conference on Enterprise Distributed Object
Computing, Sept. 1999, Manheim, Germany.

[4] P.F. Linington, Z. Milosevic, K. Raymond, Policies in
Communities: Extending the ODP Enterprise Viewpoint, Proc.
of the 2rd International Conference on Enterprise Distributed
Object Computing, Nov. 1998, La Jolla, California.

[5] M.W.A Steen, J. Derrick, Formalising Enterprise Policies,
Proc. of the 3rd International Conference on Enterprise
Distributed Object Computing, Sept. 1999, Manheim, Germany.

[6] O. Marjanovic, Z. Milosevic, Towards Formal Modelling of
e-Contracts, Proc. Of EDOC2001 conference, Seattle, USA,
Sept.01.

[7] Z. Milosevic, A. Bond, Electronic Commerce on the
Internet: What is Still Missing?, the 5th Annual Conference of
the Internet Society, INET’95, Hawaii, USA, June ‘95.

[8] Z. Milosevic, Enterprise Aspects of Open Distributed
Systems, PhD Thesis, Computer Science Dept., The University
of Queensland, Oct.1995.

[9] Z. Milosevic, A. Josang, T. Dimitrakos, M-A. Patton,
Discretionary Enforcement of Electronic Contracts, Proc. Of
EDOC2002 conference, Lausanne, Switzerland, Sept.02.

�22'0&+:U�	:#/2.'��1064#%6�

CONTRACT FOR SERVICES

This Deed of Agreement is entered into as of the Effective Date identified below.

BETWEEN ABC Company
Suite 100, Tall Towers, Surfers Paradise, Queensland, Australia
owner@abc.com

 (To be known as the Purchaser)

AND: ISP Plus
1 Ocean Street, Mermaid Beach, Queensland, Australia
herring@dstc.edu.au

 (To be known as the Supplier)

WHEREAS (Purchaser) desires to enter into an agreement to purchase from (Supplier) Application Server (To be known
as (Goods) in this Agreement).

NOW IT IS HEREBY AGREED that (Supplier) and (Purchaser) shall enter into an agreement subject to the following terms
and conditions:

1. Definitions and Interpretations

1.1 Price is a reference to the currency of the Australia unless otherwise stated.

1.2 This agreement is governed by Australia law and the parties hereby agree to submit to the jurisdiction of the
Courts of the Queensland with respect to this agreement.

2. Commencement and Completion

2.1 The commencement date is scheduled as January 30, 2002.

2.2 The completion date is scheduled as January 30, 2003.

3. Purchase Orders

3.1 The (Purchaser) shall follow the (Supplier) price lists at http://supplier.com/catalog1.html.

3.2 The (Purchaser) shall present (Supplier) with a purchase order for the provision of (Goods) within 7 days of the
commencement date.

4. Service Delivery

4.1 The (Supplier) shall ensure the (Goods) are available to the (Purchaser) under Quality of Service Agreement High
(http://supplier/qos1.htm).

4.2 The (Supplier) shall on receipt of a purchase order for (Goods) make them available within 1 days.

4.3 If for any reason the conditions stated in 4.1 (a) or 4.1 (b) are not met, the (Purchaser) is entitled to charge the
(Supplier) the rate of $100 for each hour the (Goods) are not delivered.

5. Payment

5.1 The payment terms shall be in full upon receipt of invoice. Interest shall be charged at 5 percent on accounts not
paid within 7 days of the invoice date. The prices shall be as stated in the sales order unless otherwise agreed in
writing by the (Supplier).

5.2 Payments are to be sent electronically, and are to be performed under standards and guidelines outlined in
PayPal.

6. Termination: NOT SHOWN TO SAVE SPACE.

7. Disputes: NOT SHOWN TO SAVE SPACE.

SIGNATURES

 [Signature] [Signature]

