

Implementing B2B Contracts Using BizTalk

Charles Herring1 and Zoran Milosevic2
Department of Computer Science and Electrical Engineering1

CRC for Enterprise Distributed Systems Technology2
The University of Queensland

Brisbane, Queensland QLD 4072
(herring, zoran}@dstc.edu.au

Abstract

We describe our work in implementing Business-to-
Business (B2B) contracts using Microsoft's BizTalk.
BizTalk is a Microsoft product for the development of
XML-based document messaging systems specifically for
e-Commerce. We have developed a B2B enterprise model
that supports a wide range of economic transactions
associated with intangible goods and services. This
model guides implementation of our business contract
architecture software. The model identifies specific roles
such as a repository for contract schemas and instances,
auditor, monitor and enforcer. A contract scenario is
used to illustrate the architecture and concepts
described. We go into detail on the BizTalk
implementation of contracts and show how a contract
can be used as the basis for policies and plans that
govern the behavior of the parties involved in the
contract.

1. Introduction

The role of business contracts is to reduce uncertainty
associated with the interactions between organizations.
This uncertainty can arise due to partial information that
trading partners have about each other and/or due to
circumstances that are beyond their control. A contract is
an agreement whose purpose is to mitigate such
uncertainty – by defining obligations of parties to each
other - and to have this enforceable by law.

Currently, business contracts are printed on paper and
humans carry out the contractual operations and decision-
making. The Internet and the rapid move by business to
adopt B2B e-commerce enable automation of many
aspects of electronic contracting [1]:

Providing repositories for standard contract forms.
These can be used by businesses when agreeing on the
specifics terms of a contract and instantiating contracts.
Examples are contract forms (templates) that govern real-

estate transactions, banking and insurance forms,
purchase and sale of goods and services and so on. Such
repositories can also contain forms for standard contract
clauses that can be reused when deriving new contracts
that govern specific business interactions. Availability of
standard contract clauses also enables flexible
changing/updating of existing contracts by simply
providing references to the new contract clause from the
existing contract. These changes are quite frequent in
cases of long-term contracts and are known as contract
variations and contract escalation clauses.

Digital signing of contracts, once specific contract
terms have been agreed. This can bring significant
savings, in particular in cases where contracts involve
multiple, geographically distributed trading partners, such
as those related to international contracts, and which can
involve significant time and transaction costs associated
with handling the contract signing process. This is also a
useful way of speeding up contract negotiation process.

Monitoring of the business interactions governed by a
contract, so that contract violation can be detected and
thus acted upon. This can be done either by logging of
business interactions and their audits at a later stage, or
by a more pro -active monitoring which can be particularly
applicable in cases of electronic services delivery. A
special kind of monitoring particularly suitable for longer
termed and timed contracts is tracking of contracts . This
allows timely reaction to some important deadlines such as
contract termination, thus making it possible to re-
negotiate a subsequent contract and put it in place, before
or immediately after the existing contract terminates. Such
tracking of contracts can be also seen as a mechanism that
prevents situations in which businesses continue their
interactions after the contract has expired – thus avoiding
undesirable circumstances such as penalties and fines.
Eenforcement of contract terms, in cases when contract
terms and conditions were breached. Although some of
the enforcements can be done electronically, such as in
cases of services provision and billing, the ultimate

enforcements are to be executed by human decision
makers.

Essentially a business contract enables forming
federations between organizations as it specifies their
mutual obligations governing their interaction points.
With this premise as a starting point, we have developed a
role-based architecture to support such federations and
thus realize the automated aspects of electronic
contracting identified above. Key roles in the architecture
model are [1]:

• Contract Repository (CR), providing repositories
to store standard contract forms and optionally,
standard contract clauses.

• Notary, to store signed instances of standard
contracts forms, which can later be used as
evidence of agreement in contract monitoring and
enforcement activities.

• Contract Monitor (CM), to enable monitoring of
the business interactions governed by a contract
and to signal the contract enforcer if violation
activities are detected.

• Contract Enforcer (CE), to enforce the
compliance with contract terms. When signaled
by the CM, enforcer may send a warning notice
to various parties informing them of the violation
and possibly prevent further access to the
system by non-conforming parties.

We note that there can be several business processes
identified in our business contracts model, but our
architecture is essentially role-based - to enable support
for many types of underlying contracting scenarios (i.e.
business processes implementing them).

This paper focuses on how we implement this
architecture using Microsoft’s BizTalk, ranging from those
facilities that enable producing representation of contract
forms to those that facilitate building application logic for
each of the roles, taking into account XML messages sent
between the roles. In addition, we discuss advantage of
having a declarative representation of policies that govern
behavior of trading partners and hoe these can be derived
from the natural language contract representation. Note
that in this paper we assume that possible negotiation,
digital signing and other pre-contractual operations have
already been performed and we start from the point where
there exists a signed contract instance representing an
agreement between trading partners.

We begin by introducing a scenario for trading of a
specific kind of intangible goods – MP3 format music files
(section 2). This is followed by a brief description of
Microsoft’s BizTalk infrastructure that we use to
implement support for automated contracting (section 3).
In section 4 we show the use of XML schemas to

represent various documents needed for the operations of
the business contracts architecture. We also provide a
description of the use of BizTalk Jump Start Kit
components and BizTalk server (technology preview
version) to support execution of the business contract
components. Section 5 outlines related work and section 6
provides conclusions.

2. A Scenario for Trading Intangible Goods
Using B2B Contracts

We have developed a scenario for the trading of

intangible goods to provide a definite setting for the
implementation of B2B contracts. The scenario is based on
three (fictional) parties:

• Muzac.com1: A producer of music in the form of
MP3 files that are sold over the Internet.

• eShop.com: A provider of portal and retail (B2C)
e-commerce site services.

• B2B.com: A B2B service that provides standard
business documents, message formats and
software for B2B. This software is based on the
specification of roles identified in the business
contracts architecture described above. These
include contract repository, notary (for digitally
signed contract instances) and contract monitor.

Musac.com wishes to use eShop.com’s portal in order to
sell its MP3 format music files to customers. Both the
Muzac.com and the eShop.com use B2B.com’s software
services. This permits them to easily enter into a trading
partner agreement or contract based on B2B.com’s
standard business documents such as contracts, purchase
orders, etc. They also use B2B.com’s services for
monitoring and enforcing the contract. Hence, eShop.com
and Muzac.com can download standard business
documents from B2B.com, customize them and integrate
them into their operation. The scenario begins with a
person (authorized to sign contracts at Muzac.com) filling
out a contract form on eShop.com’s web site for portal
services. (This contract was developed using B2B.com’s
standard contract templates.) He digitally signs the
contract and presses the “submit” button.

The B2B.com software running on eShop.com’s server
then processes the contract. Since this is a standard
contract it can be approved and signed automatically and
then routed to B2B.com to start the contract
implementation process, as follows. The signed contract
instance is first lodged in the Notary when it arrives at
B2B.com. B2B.com’s contract management software then
takes this contract instance and assembles a set of

1 Use of the names Muzac.com, eShop.com and B2B.com
imply no relation to any real companies.

Business Policy documents that will govern the behavior
of all parties to the contract. These policy documents can
be generated automatically based on the contract instance
(containing the particulars of the contract), the contract
template (that associates contract clauses with business
rules) and the policy templates containing generic rules.
We note that these policy templates are derived manually
and represent refinements of high-level policies in contract
clauses (this will be explained in detail in sections 4.2.and
4.3). Such an assembled policy document can then be
transmitted to Muzac.com and eShop.com. The policy
documents contains the set of rules each party must
follow. The rules specify the obligations, prohibitions and
permissions for each party relative to the contract.

Similarly, contract clauses and policy templates are the
bases for deriving a collection of actions (called plans)
that all three parties need to implement to satisfy the
contract. That is, the policy document serves as the basis
for generating a Plan Document. The plan is a set of
activities specific to that party’s performance of the
contract. Finally, the activities are mapped onto business
object (attributes, methods and events) to implement the
actual behavior in software. Also, as a result of this setup
process all the necessary logic is in place for monitoring
and enforcement of the contract. It is at this point that
business transactions may begin. For example, Muzac.com
may begin transfe rring MP3 files into its allocated storage
area on eShop.com. eShop.com will generate invoices
based on the contract-specified billing criteria. All of these
transactions will be monitored by software running at each
party’s site as well as by B2B.com.

The above scenario provides us with a “laboratory”
to develop and experiment with our B2B contract
implementation. We can devise tests to verify that each
term and condition specified in the contract is correctly
implemented via the chain of polices, rules, actions and
mappings unto objects. A simulator was developed to
model the behavior of Muzac.com and eShop.com. This
simulator produces the events that drive the system of
business messages, monitoring, etc. In addition to
verifying that the system performs correctly under normal
operating conditions, we can also simulate behaviors that
violate the conditions of the contract. For example, if
eShop.com’s server fails then various actions are
permitted by Muzac.com under the contract such as
termination, fines, etc. Simulation aspects are beyond the
scope of this paper.

3. BizTalk™: Microsoft’s Business Process
Integration Strategy

The “BizTalk Initiative” is Microsoft’s approach to
XML-based business process integration focusing on
support for e-commerce. It consists of four major parts: the
BizTalk.org community, the BizTalk Framework, the
BizTalk JumpStart Kit and the BizTalk Server [2]. Each of
these is briefly described below.

Microsoft establis hed the BizTalk.org web site in order
to foster a community of developers and promote use of
standard XML Schemas for common business processes.
The web site hosts a library to store and share BizTalk
document schemas . It also provides newsgroups where
developers can discuss aspects of the technology and
help each other use the various tools.

Figure 1. BizTalk Message Structure

The BizTalk Framework 1.0a Independent Document
Specification is a framework for application integration
and electronic commerce based on XML. It consists of a
set of XML schemas that define BizTalk Messages,
BizTalk Documents and BizTags for routing the messages.
BizTalk Messages that are the unit of interchange between
BizTalk Servers. The structure of a BizTalk Message is
shown in . The elements of a BizTalk Message are as
follows. At the outer level is a Transport Envelope.
BizTalk supports a range of transports including HTTP,
SMTP, MSMQ, etc. Each of these has own “wrapper.”
Inside the transport wrapper is the BizTalk Message itself.
It is an XML stream formatted according to the 1.0a
specification and consists of a BizTalk Header and one or
more Business Documents. The header is standard for all
BizTalk Messages and contains routing information
needed by BizTalk services. It also permits services and
applications to determine the types of Business
Documents in the message. The Business Document is the
payload of a message. Also called the body, it is an XML
stream containing data such as purchase orders, invoices,
etc.. The BizTags are fields in the BizTalk Message header

BizTalk Message

BizTalk Document

BizTalk Header

Document Body

Business Document(s)

Document Manifest

Delivery Information

BizTalk Document

BizTalk Header

Document Body

Business Document(s)

Document Manifest

Delivery Information

Transport Envelope

The business data

<body>

<manifest>

<delivery>

<header>

<biztalk_1>

Transport-Specific envelope

that provide a standard way of specifying routing and
handling information such as the destination and source.
These tags are used by the BizTalk server for processing
the message.

Figure 2. BizTalk JumpStart Kit Architecture

Microsoft introduced the BizTalk JumpStart Kit (JSK)
to prepare programmers for XML-based application
development and as first step toward the BizTalk Server.
The JSK provides an environment for developing, and
deploying software components that manage BizTalk
Messages, database access and business logic. It
consists of a number of parts as shown in Figure 2. A set
of Transport Adapters and Core Services take care of
transporting BizTalk messages and routing them from
application source to destination. Administrative tools
provide a convenient way to specify how messages are
routed between applications. A number of programming
support tools are provided. The most important of these
are the JSK.Envelope object, the Visual Basic (VB)
Wizards that aid programmers in generating Plug-Ins, and
Application Adaptors. The JSK.Envelope object is part of
the BizTalk library and facilitates handling all BizTalk
documents. It is responsible for encapsulating documents
as XML messages. The JSK.Envelope is a generic wrapper
that knows about the general structure of a BizTalk
message and is used in routing messages. The Plug-In is
called that because it “plugs in” to a JSK.Envelope object.
A Plug-In is generated for each Business Document type
using its XML Schema. The Plug-In takes the form of an
ActiveX DLL (Dynamic Load Library). It is used to
provide the programmer with an easy way to manipulate
the data that is specified by the XML Schema. That is, the
programmer accesses the data using standard VB data
types and does not have to work directly with the XML
DOM (Document Object Model). The Application
Adaptor Wizard generates a COM+ wrapper that lets the
programmer connect the application’s business logic with
the JSK message routing infrastructure. The Application

Adaptors are used to receive the BizTalk Messages (and
using the Plug-In) apply the specific business logic.
The BizTalk Server 2000 Technology Preview release
(BTS-TP) is the current version of the BizTalk Server.
BTS-TP greatly extends the XML-based messaging
concepts introduced in the JSK. BTS-TP consists of a set
of BizTalk Services and Server Components. BizTalk
Services include receiving incoming documents, parsing
the documents to determine their specific format,
extracting key identifiers and identifying specific
processing rules, and delivering documents to their
respective destinations. BizTalk Server Components that
provide data translation capabilities, organization and
trading partner management, server management, and
document tracking. These include:
§ BizTalk Editor for editing XML schemas.
§ BizTalk Mapper for translating between

difference message schemas.
§ BizTalk Management Desk provides a graphical

user interface to manage the exchange of data
between trading partner organizations and
applications.

§ BizTalk Server Administration Console is a
Microsoft Management Console (MMC) snap-in
used to manage and maintain servers or server
groups.

4. Implementing B2B Contracts Using
BizTalk

This section describes the implementation of our B2B
contract system. Continuing with the scenario above, we
give the specification of key business documents and how
they are generated and processed. We explain how and
where the various BizTalk tools are used to manipulate
and manage these documents. The goal of this section is
to go into detail on the structure of these documents and
their relationships to each other based on the B2B
scenario. From the scenario we are concerned with the
following three major business document types: Contract,
Policy, and Plan. The section is organized accordingly
around these documents.

4.1 Business Contract Documents

The contract for eShop.com’s services is shown at
Appendix A (based on the contract proposed in [3]).
Business contracts are written by humans and are usually
based on existing contracts that are, in turn, assembled
from standard clauses. Therefore we have chosen to
express a contract as a collection of clauses. This takes

the form of an XML schema named B2BContract as
shown in Appendix B. Notice the contract schema
contains element and attribute type definitions
corresponding to the variables in the contract (shown
between square brackets in Appendix A). Also note that
the key data structure, the Contract, contains a Preamble,
one or more ClauseGroups and Signatures. The latter is
possible to be included in the contract schema because we
use this schema to represent both the contract forms that
need to be filled by specific values of a contract (referred
to as contract templates) and the signed contract
instances.

A Contract Template is the basic document that
specifies an instance of a contract and is an instance of
B2BContract. Appendix C shows the contract template
corresponding to the eShop.com contract. The purpose of
the Contract Template is to specify the collection of
clauses that make up the contract. Note they are specified
as URNs and the contract template identifies the URN of
the server on which they can be found. Thus each clause
is stored in a separate XML file on a server. An XML
Schema called B2BClause defines the clauses themselves.
In the current implementation the clause schema
corresponds to the element type “clause” as defined in the
B2BContract schema. Instances of the B2BClause
schema, called Clause Templates, store the “meta data”
associated with a particular clause. This includes the
human readable text, specification of the contract variables
or fields and an URN that identifies the clause’s
corresponding Policy file. The motivation for describing
contracts as described is to permit flexible generation,
efficient transmission and easy manipulation of the
various related documents required in our approach –
based on that contract representation. Specifically, our
scenario starts with a person from Muzac.com completing
a contract form on eShop.com’s web site. This HTML-
based form (as it appears in Appendix A) is generated
from the Contract Template by following the URNs to the
Clause Templates and retrieving the metadata associated
with each clause (e.g. the text and fields). Similarly, the
Active Server Page (ASP) that processes the HTML form
is generated from the contract template. This ASP takes
the values entered by the user into the input form and
builds a Signed Contract Instance.
A Signed Contract Instance is an XML document that is
an instance of the B2BContract schema. However, the
signed contract instance contains only the values of the
fields for each clause the user entered. This approach
results in a very small XML document that can be
efficiently transmitted. All other information associated
with the contract can be retrieved as needed. That is, there
is no need to ship around the large amount of text that is

meaningful only to humans. Other needed documents
such as the Business Policy Documents can be assembled
based on the signed contract instance. Policy Documents
are discussed in the next section.
This completes the description of the business documents
related to the first part of the scenario: a signed contract
instance is placed on the eShop.com web site. Now we
show where the various BizTalk tools provide support for
managing these XML documents and building the
application that takes the signed contract instance and
results in it being placed in the Notary on B2B.com (Figure
3). The main BizTalk tools used are the Plug-in and
Application Adaptor from the JSK and the “agreement”
for document handling from the BizTalk Server.

The Plug-in greatly simplifies the task of dealing with
complex XML documents from the programmer’s
perspective. They provide an abstraction that lets the
programmer access the underlying schema’s data model
using common Visual Basics data structures. Thus, the
programmer uses the Plug-in Wizard to generate a Plug-in
for each XML schema defined above. These can then be
used to access XML files or to generate XML strings. For
example, in the ASP page mentioned above, the user-
supplied data is taken directly from the HTML “input”
fields and placed into an instance of the B2BContract
Plug-in object on the e-Shop.com server. Once all the data
is input, the header fields of the BizTalk message are filled
in with the address of the sender and receiver. Remember,
a Plug-in is always “plugged into” an associated BizTalk
Envelope object, i.e. the Envelope objects points to the
corresponding plug-in (Figure 3) shows this in the case of
an Envelope object that is created for signed contract
instance messages that will be sent from the e-Shop to the
B2B.com server).

Now, at the e-Shop.com site the signed contract
message is retrieved from the Envelope as an XML string
and handed over to the BizTalk Server running on
eShop.com’s machine to route (for simplicity Figure 3 does
not show envelope objects and other objects on the e-
Shop.com). This is where the BizTalk Server “agreement”
mechanism takes over and routes the document to the
BizTalk Server running on B2B.com’s machine.

Once a properly formatted BizTalk message arrives at
the B2B server an application adapter for that message will
create an Envelope object which will hold the message
arrived - effectively, the message is held inside the
Envelope’s XMLDOM (Document Object Model). The
programmer uses the Application Adaptor Wizard (in
Visual Basic) to build a COM+ application object that has
interfaces known to BizTalk Server. Specifically, the
Application Adaptor generated object has a
ReceiveMessage interface. The inbound and outbound

agreements, linked by a pipeline, tell BizTalk Server what
message types to deliver to what Application Adaptor. In
this case, the signed contract instance messages are
delivered to the Notary COM+ object on B2B.com’s
machine. Once again, the Plug-in’s for the contract
schemas are used to aid in processing the XML document.
The Notary adapter takes the values from the signed
contract instance and places them in a SQL server
database. A GUID (globally unique identifier) is assigned
to the contract instance and the message is handed off to
the Contract Management software for further processing,
as described in the following section.

4.1 Business Policy Documents

Once a signed contract instance has been lodged in the
Notary it is the job of the Contract Management software
running on B2B.com’s server to start the process of
implementing the contract between the parties. The first
step is to assemble the Business Policy Documents for
each of the contract clauses. These documents form the
basis for specifying, monitoring and enforcing the
behaviors of Muzac.com and eShop.com relative to this
particular contract. Thus, the policies derived from the
contract govern the range of behaviors the parties may
take while the contract is in effect.
According to [4], policy is defined as a set of rules related
to a particular purpose, and a rule can be expressed as an
obligation, permission or prohibition. In order to specify
rules we use the notation introduced in [5], which is based
on this policy definition:

Rule #: <role> [is] (obligated | forbidden | permitted)
[to] [do] (<action> [before <condition>] | satisfy
<condition>) [, if <condition>][, where <condition>][,
otherwise see Rule <#>]

Currently humans must still write contracts, and so
humans must write policies in our approach. Each clause
in the contract must be manually (by human) mapped onto
one or more business rules (Appendix D shows examples
of these rules for eShop.com’s contract.) The purpose of
these rules is to isolate each of the “terms and conditions”
in the contract so they may be translated into Business
Plan Documents for implementation, monitoring and
enforcement. (This is described in the next section.)
Inspection of the rules shows there are two roles –
Purchaser and Supplier – just as in the contract. Each rule
relates a contract variable (e.g. start date) to an action of
the role given some conditions.

The XML schema, B2BContractPolicy, for the policy
language is included in Appendix E. The schema is a direct
mapping from the rule language given above to XML
elements. Each of the business rules (in Appendix D) is
expressed as an instance of this schema. These are called
Policy Templates and are stored in files on the B2B server.
When combined with the actual values specified in a
contract instance these policy templates are instantiated in
policy rule instances. The contract management software
on B2B.com’s server takes the contract instance and
processes each clause to assemble the Policy Documents
for eShop.com (supplier) and Muzac.com (purchaser). This
is done by loading the clause template into its Plug-in and
accessing the policy URN that leads to its particular Policy
Template. The values from the contract instance are

1. XML message
arrives (signed contract)

Notary

Adapter

Plug-in

DBB2B.com

E-Shop

Outbound Agreement
From: e-shop.com
To: B2B.com
DocDef:contract schema

Inbound Agreement
From: e-shop.com
To: B2B.com/Notary
DocDef:contract schema
Transport: HTTP

Envelope

2. Adapter creates
Envelope object 3. Adapter extracts

Business data

4. Adapter executes
Business logic (stores
Data in the DB)

1. XML message
arrives (signed contract)

Notary

Adapter

Plug-in

DBB2B.com

E-Shop

Outbound Agreement
From: e-shop.com
To: B2B.com
DocDef:contract schema
Transport: HTTP

Inbound Agreement
From: e-shop.com
To: B2B.com/Notary
DocDef:contract schema

Envelope

2. Adapter creates
Envelope object 3. Adapter extracts

Business data

4. Adapter executes
Business logic (stores
Data in the DB)

1. XML message
arrives (signed contract)

Notary

Adapter

Plug-in

DBB2B.com

E-Shop

Outbound Agreement
From: e-shop.com
To: B2B.com
DocDef:contract schema

Inbound Agreement
From: e-shop.com
To: B2B.com/Notary
DocDef:contract schema
Transport: HTTP

Envelope

2. Adapter creates
Envelope object 3. Adapter extracts

Business data

4. Adapter executes
Business logic (stores
Data in the DB)

1. XML message
arrives (signed contract)

Notary

Adapter

Plug-in

DBB2B.com

E-Shop

Outbound Agreement
From: e-shop.com
To: B2B.com
DocDef:contract schema
Transport: HTTP

Inbound Agreement
From: e-shop.com
To: B2B.com/Notary
DocDef:contract schema

Envelope

2. Adapter creates
Envelope object 3. Adapter extracts

Business data

4. Adapter executes
Business logic (stores
Data in the DB)

1. XML message
arrives (signed contract)

Notary

Adapter

Plug-in

DBB2B.com

E-Shop

Outbound Agreement
From: e-shop.com
To: B2B.com
DocDef:contract schema

Inbound Agreement
From: e-shop.com
To: B2B.com/Notary
DocDef:contract schema
Transport: HTTP

Envelope

2. Adapter creates
Envelope object 3. Adapter extracts

Business data

4. Adapter executes
Business logic (stores
Data in the DB)

1. XML message
arrives (signed contract)

Notary

Adapter

Plug-in

DBB2B.com

E-Shop

Outbound Agreement
From: e-shop.com
To: B2B.com
DocDef:contract schema
Transport: HTTP

Inbound Agreement
From: e-shop.com
To: B2B.com/Notary
DocDef:contract schema

Envelope

2. Adapter creates
Envelope object 3. Adapter extracts

Business data

4. Adapter executes
Business logic (stores
Data in the DB)

1. XML message
arrives (signed contract)

Notary

Adapter

Plug-in

DBB2B.com

E-Shop

Outbound Agreement
From: e-shop.com
To: B2B.com
DocDef:contract schema

Inbound Agreement
From: e-shop.com
To: B2B.com/Notary
DocDef:contract schema
Transport: HTTP

Envelope

2. Adapter creates
Envelope object 3. Adapter extracts

Business data

4. Adapter executes
Business logic (stores
Data in the DB)

1. XML message
arrives (signed contract)

Notary

Adapter

Plug-in

DBB2B.com

E-Shop

Outbound Agreement
From: e-shop.com
To: B2B.com
DocDef:contract schema
Transport: HTTP

Inbound Agreement
From: e-shop.com
To: B2B.com/Notary
DocDef:contract schema

Envelope

2. Adapter creates
Envelope object 3. Adapter extracts

Business data

4. Adapter executes
Business logic (stores
Data in the DB)

3. Adapter extracts
Business data

4. Adapter executes
Business logic (stores
Data in the DB)

Figure 3. Use of BizTalk infrastructure: Notary component

extracted (from the contract’s Plug-in) and placed in the
appropriate elements of the policy template rules thus
forming a policy instance. The routing information in the
BizTalk message header is completed and the policy
documents are handed over to the BizTalk server to
deliver to the appropriate party.

Now, B2B.com has been employed by eShop.com and
Muzac.com to provide services for auditing, monitoring
and enforcement of the contract. This takes the form of
two additional Policy Documents: one to each of the
parties to the contract and one to B2B.com itself. These
policies specify what information is required by B2B.com
to perform its services. For example, in order to carry out
auditing, B2B.com randomly requests that eShop.com
send a copy of the last several invoices so as to verify
that billing is being correctly calculated. In terms of
monitoring, B2B can monitor exchange of messages
between trading partners (e.g. sending of purchase orders
by Musac.com to eShop.com) or monitor behavior of both
the e-shop.com and Musak.com servers. Certain
messages, such as notification by Muzac.com of a breach
of contract, are always (by default policy) copied to
B2B.com. A number of implementations are possible, for
example, the use of MSMQ triggers, as described in [3]. In
terms of BizTalk Server, each of the rules requiring
messages to be sent from the parties to B2B.com is
implemented as an agreement. BizTalk Server provides the
“Management Desk” which is a graphical user interface
for manual input of agreements. BizTalk Server also
exposes the underlying COM objects in a library that can
be accessed programmatically from Visual Basic. Thus, it
is possible to dynamically establish the message channels
for B2B to perform its services.
It is important to note that in terms of implementing the
contract management software, the process of business
rule specification explained above essentially determines
the logic design of the underlying business objects. Our
goal is to eventually build up a general set of business
objects to support a range of B2B contracts and the
required contract operations. Even then, when new
contracts reveal new rules, the business objects must be
extending manually, i.e., by programming. This is the topic
of the next section.

4.2 Business Plan Documents

At this stage in the scenario eShop.com and
Muzac.com have received their copies of the signed
contract instance and the related business policy
document. The BizTalk tools that facilitate this are:
BizTalk agreements that route the messages from server to
server, the Application Adaptors that receive the

messages (via the a greements) and the Plug-in that aid the
programmer in manipulating the XML-based message
data. Now, from this point forward we leave the domain of
BizTalk services. That is, BizTalk Server and the JSK do
not address the implementation of the business objects
and their processing logic. Future releases of BizTalk may
offer more support tools or even provide domain specific
(e.g. Banking) frameworks, but this is not currently the
case. Therefore, aside from BizTalk message routing, our
contract implementation is that of a general Windows
DNA application.

Continuing with the scenario, having received the
policy and contract documents, it is the job of the
B2B.com’s contract management software (running on
eShop.com and Muzac.com servers) to map the specifics
of the policy documents into the business objects. To
accomplish this mapping the contract management
software generates a number of BizTalk messages that we
collectively refer to as Business Plan Documents. These
documents contain parameters and other specific
instructions that implement the behaviors required by the
contract. There are two categories of documents: those
that deal with implementation of the business logic locally
and those that relate to contract monitoring via B2B.com.
The local implementation plan messages result in
parameters being set on the business object such as the
start and end date of the contract, the URN for obtaining
the price list, etc. These are parameters to existing
business logic that must be developed based on the
analysis of business rules as described in the last section.

Time-based and periodic behavior is also derived from
the policy document. The B2BPlan schema defines a
structure for specifying activities based on rules from the
policy document. The resulting plan is lodged in a
component responsible for maintaining and executing the
activities. An example of a scheduled behavior is
eShop.com sending a bill based on the agreed upon billing
interval. Event-based behaviors are also implemented
based on the policy document. When Muzac.com receives
a bill from eShop.com this results in an event-notification
sent to the accounting component to prepare a payment.

Referring to the policy language shown in the last
section, the above describes the conceptually
straightforward mapping of obligations and prohibitions
onto business objects. Permissions imply that local policy
may be applied to further refine the business rules
contained in the policy documents. This provides a level
of autonomy for decision-making at the local level. For
example, the contract contains a clause that permits the
purchaser to levy a fine on the supplier for non-
performance. This type of local autonomous behavior may
be deferred to a human for decision-making by local

policy. A default local policy could be to defer approval
of permissive policy rules to a human.

In summary, the policy documents are translated into a
number of business plan documents that are then
transmitted to the business objects that implement the
desired logic. In our implementation these objects are
COM+ applications. These applications are designed and
programmed based on the analysis that determines the
business rules as described in the last section. Our current
implementation uses the range of Windows DNA support
to implement the business objects and contract
monitoring. This includes COM+ queued components,
COM+ event subscription and notification service,
MSMQ triggers and SQL Server stored procedures. Also,
we are reviewing Visual Rule Studio [6], a Visual Basic
Designer that provides true rule -based (forward and
backward chaining) application development. We think
this tool will permit us to develop a more general approach
to implementing business rules and more flexible business
objects.

5. Related Work

Our XML-based approach for specifying contract
forms is similar to some of the results from the CrossFlow
project [7]. We add additional features that reflect the legal
aspects of contracts such as description of contracts as a
set of obligation policies between trading partners.
Additionally, we support a precise description of policies
in terms of roles and actions that these can undertake –
and express our policy notation using XML. Further, our
approach of defining and implementing the roles needed
to support contract operations has some similarity to
recent IBM work on contracts [8]. Again, our approach is
focused on supporting business and in particular legal
views on contracts and thus our business contract
architecture does not include low-level concerns such as
security and transport mechanisms used to support
contract operations.

The EU-funded COSMOS project [9] provides a set of
services that facilitates the use of e-contracts. Rather than
attempting to model the full complexity of contracts as
stated in the introduction, their model identifies only those
parts that are amenable to efficient automation. Hence,
much of the system deals with lower-level, communication
and representation issues, rather than more contract-
specific issues, though they do provide a basic
architecture and a meta-model outlining the structure of a
contract. In addition, they provide some tools for contract-
specific functionality, such as tools for the contract-
negotiation process and derivation of a workflow (based
on Petri-nets) from the contract, for its enactment.

6. Conclusion and future work

This paper has outlined our approach of supporting
contracting for the sale of intangible goods – MP3 files
among the producers of these files and an e-shop where
these are made available for sale. We have developed a
contract that represents business relationships between
these two trading partners. This natural language contract
provides the starting point for developing an XML
schema for that contract template and XML schemas for
contract clauses that constitute this contract. For each of
the contract clauses we have then produced one or more
business policies that represent refinements of the high-
level policy statements from contract clauses. These
policies can be used for the monitoring purposes and also
as a starting point to implement behavior of the trading
partners according to these policies. We have used
Microsoft’s BizTalk infrastructure to facilitate process of
producing XML schemas for contract forms and contract
policies and to facilitate exchange of these documents by
the components implementing the logic needed for
business contracts architecture.

We plan to extend this work by providing a better link
between policies that describe obligations of trading
partners and the behavior that implements these
obligations (business activities). In addition, we plan to
further investigate the issues associated with contract
negotiation, conflict detection and resolution of the legal
rules when composing customized contracts.

7. Acknowledgements

The authors would like to thank Andrew Goodchild for
developing the contract shown in Appendix A, initially
presented in [3]. We would also like to thank Andy Bond
and Kerry Raymond for their comments on the earlier
version of the paper. The work reported in this paper has
been funded in part by the Co-operative Research Centre
for Enterprise Distributed Systems Technology (DSTC)
through the Federal Government's AusIndustry CRC
Programme (Department of Industry, Science &
Resources).

References

[1] Milosevic, Z. and Bond, A. "Electronic Commerce on the
Internet: What is Still Missing?", Proceedings of 5th Conference
of the Internet Society; pages 245-254, Honolulu, June 1995.

[2] BizTalk Initiative: http://www.microsoft.com/biztalk/

[3] Goodchild, A., Herring, C., Milosevic, Z., “Business
Contracts for B2B”, CAISE’00 Workshop on Infrastructures for
Dynamic B2B Service Outsourcing, Stockholm, June 2000.

[4] ISO/ITU-T Recommendation X.902, Open Distributed
Processing, Reference Model - Part 2: Foundations, 1994.

[5] Steen, M. and Derrick, J. "Formalizing ODP Enterprise
Policies", Proceedings of Enterprise Distributed Object
Computing Conference (EDOC'99), 1999.

[6] Visual Rule Studio, www.rulemachines.com

[7] Cross-Organizational Workflow Support in Virtual
Enterprises ESPRIT Project 28635; http://www.crossflow.org

[8] IBM XML specification for business-to-business
transactions;
http://www-4.ibm.com/software/developer/library/tpaml.html

[9] Griffel, F., et al. "Electronic Contracting with COSMOS -
How to Establish, Negotiate, and Execute Electronic Contracts
on the Internet", EDOC'98 Workshop, La Jolla, California USA,
November 1998

NOTE: Only fragmenst of the documents and schemas
can be shown, as they are each several pages long.

Appendix A: Contract

CONTRACT FOR PORTAL SERVICES

This Deed of Agreement is entered into as of the Effective

Date identified below.
BETWEEN [NameAddress]
 (To be known as the (Purchaser) in this Agreement)
AND: [NameAddress]
(To be known as the (Supplier) in this agreement)
WHEREAS (Purchaser) desires to enter into an agreement
to purchase from (Supplier) [Item] (To be known as
(Goods) in this Agreement).
NOW IT IS HEREBY AGREED that (Supplier) and
(Purchaser) shall enter into an agreement subject to the
following terms and conditions:
1. Definitions and Interpretations
1.1 Price is a reference to the currency of the [Country]

unless otherwise stated.
1.2 This agreement is governed by [Country] law and

the parties hereby agree to submit to the jurisdiction
of the Courts of the [Country] with respect to this
agreement.

2. Commencement and Completion

2.1 The commencement date is scheduled as [Date].
2.2 The completion date is scheduled as [Date].
2.3 The contract may be modified by agreement as

defined in Section [Section].
3. Purchase Orders
3.1 The (Purchaser) shall follow the (Supplier) price lists

[PriceList].
3.2 The (Purchaser) shall present (Supplier) with a

purchase order for the provision of (Goods) within
[Days] days of the commencement date.

3.3 Purchase orders are to be sent electronically, and are
to be interpreted under standards and guidelines
outlined in Supplement A [Supplement].

4. Service Delivery
4.1 The (Supplier) shall ensure the (Goods) are available to

the (Purchaser) under Quality of Service Agreement
[QoS]

4.2 The (Supplier) shall on receipt of a purchase order for
(Goods) the (Supplier) shall make them available within
[Hours] hours.

4.3 If for any reason the conditions stated in 4.1 (a) or 4.1
(b) are not met, the (Purchaser) is entitled to charge the
(Supplier) the rate of [CurrencyUnits] for each hour the
(Goods) are not delivered.

5. Payment
5.1 The payme nt terms shall be in full upon receipt of

invoice. Interest shall be charged at [Percentage] on
accounts not paid within [Days] days of the invoice date.
The prices shall be as stated in the sales order unless
otherwise agreed in writing by the (Supplier).

5.2 Payments are to be sent electronically, and are to be
performed under standards and guidelines outlined in
Supplement B [Supplement].

6. Rejection
6.1 If the (Goods) do not comply with the Order or the

(Supplier) does not comply with any of the conditions,
the (Purchaser) shall at its sole discretion be entitled to
reject the (Goods) and the Order.

Sections 7– 9 are not shown.
SIGNATURES

In witness whereof (Supplier) and (Purchaser) have
caused this agreement to be entered into by their duly
authorized representatives as of the effective date written
below.

Effective date of this agreement: [Date]
[Signature] [Signature]

Appendix B: Contract Schema

<?xml version="1.0"?>
<Schema name="B2BContract"
 xmlns="urn:schemas-microsoft-com:xml-data"

 xmlns:dt="urn:schemas-microsoft-
com:datatypes">

Only the Contract Element is shown below. The
ClauseGroup contains Clauses.

<ElementType name="Contract">
 <attribute type="ContractID"/>
 <attribute type="ContractRepositoryUrn"/>
 <attribute type="ContractPolicyUrn"/>
 <attribute type="ContractTemplateUrn"/>

 <attribute type="ContractType"/>
 <element type="Preamble"/>

<element type="ClauseGroup" minOccurs="1"
maxOccurs="*"/>

 <element type="Signatures"/>
 </ElementType>

</Schema

Appendix C: Contract Template

<?xml version='1.0' ?>
<Contract xmlns="urn:http://localhost/uB2Bu/B2BContractSchema.xml"
 <ClauseGroup ClauseGroupID="1." ClauseGroupTitle="Definitions and Interpretations">
 <Clause ClauseID="1.1" ClauseUrn="B2BClauseTemplate0002.xml">
 </Clause>
 <Clause ClauseID="1.2" ClauseUrn="B2BClauseTemplate0003.xml">
 </Clause>
 </ClauseGroup>

ClauseGroups 2 – 9 are not shown.

 </Contract>
 </body>
</biztalk_1>

Appendix D: Contract Policies

Preamble:Purchaser is obligated to Purchase(Goods) Where(Goods=Item) Otherwise Rule 7.1

Supplier is obligated to Supply(Goods) Where(Goods=Item) Otherwise Rule 7.1

1.1 Purchaser is obliged to Use(Price) Where(Price = DenominatedIn(County)) Otherwise Rule 7.1

Supplier is obliged to Use(Price) Where(Price = DenominatedIn(County)) Otherwise Rule 7.1

1.2 Purchaser is obliged to Respect(Law) Where(Law = County) Otherwise Rule 7.1

Supplier is obliged to Respect(Law) Where(Law = County) Otherwise Rule 7.1

Rules 2–7 are not shown.

Appendix E: Policy Schema

<?xml version="1.0"?>
<Schema name="B2BContractPolicy" …/>

Some attribute and element types are not shown.

<ElementType name="PolicyRule" content="eltOnly" model="closed">
<attribute type="RuleNumber"/>
<attribute type="RuleGUID"/>
<attribute type="RuleClauseID"/>
<element type="RuleRole"/>
<element type="RuleConstraint"/>
<element type="RuleAction"/>

<element type="RuleWhere"/>
<element type="RuleCondition"/>
<element type="RuleOtherwise"/>
</ElementType>
<ElementType name="ContractPolicy" content="eltOnly" model="closed">
<element type="PolicyRule" minOccurs="1" maxOccurs="*"/>
</ElementType>

</Schema>

